Facing climate change implications on feeds unavailability, unconventional resources are being considered with a growing interest such as aromatic plant distillation residues with a two-fold object, enhancing meat quality by increasing the antioxidant properties and reducing feed prices which are often imported though expensive. Hence, this study aims to assess the effects of rosemary distillation residues (RR) incorporation in concentrate associated to two nitrogen sources as a substitute for standard concentrate on lamb’s growth, carcass traits and meat quality. For this, 24 Barbarine male lambs (3 months old, 17.83 ± 2.6 kg body weight) were divided into three groups. All lambs received individually 600 g of oat hay as roughage and 600 g of standard concentrate for control group, 600 g of concentrate based on RR and soybean meal for RRS group and 600 g of concentrate based on RR and faba bean for RRF group. After 65 days of experiment, all lambs were slaughtered. Phenolic and tocopherol intakes were significantly higher for both RR groups compared to control (p < 0.05). Growth, carcass weights, dressing percentages and non-carcass component weights were unaffected by the diet (p > 0.05). Moreover, regional and tissular compositions and meat physical properties were similar irrespective of the diet (p > 0.05). All color parameters were similar among groups (p > 0.05). However, meat produced by lambs receiving RR-based concentrate was richer on vitamin E and polyphenol contents than control lambs (p < 0.05). Rosemary by-products may substitute the standard concentrate resulting in similar lamb’s growth and carcass traits, while improving meat quality by increasing vitamin E content, which could improve its antioxidant power.
INGA FOOD S. A., as a Spanish company that produces and commercializes fattened pigs, has produced a hybrid Iberian sow called CASTÚA by crossing the Retinto and Entrepelado varieties. The selection of the parental populations is based on selection criteria calculated from purebred information, under the assumption that the genetic correlation between purebred and crossbred performance is high; however, these correlations can be less than one because of a GxE interaction or the presence of non-additive genetic effects. This study estimated the additive and dominance variances of the purebred and crossbred populations for litter size, and calculated the additive genetic correlations between the purebred and crossbred performances. The dataset consisted of 2030 litters from the Entrepelado population, 1977 litters from the Retinto population, and 1958 litters from the crossbred population. The individuals were genotyped with a GeneSeek® GGP Porcine70K HDchip. The model of analysis was a ‘biological’ multivariate mixed model that included additive and dominance SNP effects. The estimates of the additive genotypic variance for the total number born (TNB) were 0.248, 0.282 and 0.546 for the Entrepelado, Retinto and Crossbred populations, respectively. The estimates of the dominance genotypic variances were 0.177, 0.172 and 0.262 for the Entrepelado, Retinto and Crossbred populations. The results for the number born alive (NBA) were similar. The genetic correlations between the purebred and crossbred performance for TNB and NBA—between the brackets—were 0.663 in the Entrepelado and 0.881 in Retinto poplulations. After backsolving to obtain estimates of the SNP effects, the additive genetic variance associated with genomic regions containing 30 SNPs was estimated, and we identified four genomic regions that each explained > 2% of the additive genetic variance in chromosomes (SSC) 6, 8 and 12: one region in SSC6, two regions in SSC8, and one region in SSC12.
The shortage of some ingredients and, consequently, the continuous increase in the price of feed encourage the search for other alternatives to maintain animal production and enhance its products. In this line, the use of aromatic plant by-products in animal diet has been recently and widely considered, given their richness in bioactive compounds. Therefore, the aim of this study was to investigate the effects of the inclusion of rosemary residues (RR) and protein sources on lamb meat quality. The experiment was carried out on 24 male Barbarine lambs (3 months old) with an average body weight (BW) of 17.8 ± 2.6 kg, which were divided into three homogeneous groups according to BW. The diet comprised 600 g of oat hay and 600 g of concentrate. Three types of concentrate were evaluated: commercial concentrate as the control group (C); rosemary residues (RR) plus soybean meal as the RRS group, and RR plus faba bean as the RRF group. After an experimental period of 65 days, lambs were slaughtered. The inclusion of RR in both concentrates increased the α-tocopherol and total polyphenol content in meat and protected meat against discoloration (high red index and chroma after 9 days of storage) but did not affect meat lipid oxidation, which was similar for all groups. The FA profile was affected by the inclusion of RR, with no effect from the source of protein (faba bean or soybean). The inclusion of RR in the concentrate increased the C18:2 n-6, C18:3n-3, C20:4 n-6, C20:5 n-3, and C22:5 n-3 content (p < 0.05). Consequently, the inclusion of RR also increased the total polyunsaturated FA (p < 0.05) and the ratio of polyunsaturated FA to saturated FA (p < 0.05). The results of this study demonstrate that concentrate based on RR could be useful for lamb meat production by improving the nutritional quality of meat, especially the fatty acid profile. In addition, soybean meal can be replaced by faba bean in lamb concentrate without affecting meat quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.