The field of underwater acoustic networking is growing rapidly thanks to the key role it plays in many military and commercial applications. Among these are disaster prevention, tactical surveillance, offshore exploration, pollution monitoring and oceanographic data collection. The underwater acoustic propagation channel presents formidable challenges, including slow propagation of acoustic waves, limited bandwidth, high and variable propagation delay. Furthermore, it is affected by fading, Doppler spread and multipath propagation. Therefore, efficient protocol design tailored for underwater acoustic sensor networks entails many challenges across different layers of the networking protocol stack. The objective of this chapter is to provide an overview of the recent advances in underwater acoustic communication and networking. We briefly describe the typical communication architecture of an underwater network followed by a discussion on the basics of underwater acoustic propagation and the state of the art in acoustic communication techniques at the physical layer. We then present an overview of the recent advances in protocol design at the medium access control and network layers as well as in cross-layer design. Finally, we provide a detailed discussion of the existing underwater acoustic platforms for experimental evaluation of underwater acoustic networks.
We propose a new secure underwater acoustic communication scheme designed to let a user (Alice) transmit a confidential message to another user (Bob) in the presence of an eavesdropper (Eve). A typical approach in conventional wireless physical-layer security is to rely on a friendly jammer to jam Eve through artificial noise (AN). Instead, for the first time, we propose a secure underwater communication scheme that relies on cooperative friendly jamming through CDMA-based analog network coding (ANC). The cooperative friendly jammer transmits information using the same spreading code used in the legitimate Alice-Bob link. The information transmitted by the cooperative jammer is known a priori to Bob, but not to Eve. Although the jammer's packet will also interfere at Bob, we show that after jointly estimating the two multipath-affected channels, Bob can suppress the interfering packet and decode Alice's packet, while Eve cannot. We also formulate the problem of joint optimal selection of friendly jammer and power allocation (for Alice and the jammer) that minimize Eve's capability of intercepting the signal while guaranteeing a predefined level of quality of service (QoS) for Bob. The proposed scheme is implemented in a testbed based on Teledyne Benthos Telesonar SM-975 underwater modems and tested extensively in Lake LaSalle at the University at Buffalo. Experiments and simulations demonstrate that, for a given energy budget, the proposed scheme can guarantee much higher bit error rate (BER) at Eve, while creating minimal BER disturbance at Bob, compared to the ANaided approach.
The performance of multi-hop underwater acoustic network is known to be limited by the long propagation delays and by the limited bandwidth of the underwater acoustic (UW-A) channel. Recent work on analog network coding (ANC) has shown that significant throughput gains can be achieved in multi-hop wireless networks. However, implementing ANC for UW-A communications is very challenging as the UW-A channel is severely affected by multipath. In this paper, we propose CE-CDMA, a collision-enabling direct-sequence code-division multiple-access scheme for multi-hop underwater acoustic sensor networks (UW-ASNs). In CE-CDMA two nodes, separated by two hops, are assigned the same code-division channel (i.e., spreading code) to communicate concurrently. The transmission of packets by the two nodes will therefore collide at the intermediate (relay) node. However, we show that by exploiting a priori information, i.e., the interfered packet previously received from one of the nodes, and an adaptive RAKE receiver that jointly estimates the two multipath-affected channels, the relay node can cancel the interference before decoding the packet of interest. Experiments demonstrate that for a 1 − 2 dB tradeoff in signal-to-noise ratio (SNR) the proposed scheme can potentially improve the channel utilization of a unidirectional multi-hop linear network by up to 50 %. We also outline the basic functionalities of a MAC protocol (CE-MAC) designed to support the proposed scheme.
We analyze the statistical channel properties of short to very shortrange shallow water communication environments based on real channel measurements taken in a water-tank, a swimming pool, very shallow and shallow lakes. More specifically, we estimate the channel impulse response (CIR), the probability density function (PDF) of channel fading and fit to Rayleigh, Nakagami, Weibull, Rician and Beta distributions. We compare the 'goodness-of-fit' of these distributions based on the Kullback-Leibler (KL) divergence criteria. From our experimental results, we confirm that the shallow water acoustic channel is highly time-varying and does not necessarily follow a Rayleigh distribution. Instead, we observe that in very-shallow water lake environments the channel fading exhibits close-to Weibull or Rician distribution. On the other hand, in shallow water lake the channel fading behavior is better captured by a Beta distribution.
We propose a novel optimal time slot allocation scheme for clustered underwater acoustic sensor networks that leverages physical (PHY) layer information to minimize the energy consumption due to unnecessary retransmissions thereby improving network lifetime and throughput. To reduce the overhead and the computational complexity, we employ a two-phase approach where: (i) each member node takes a selfish decision on the number of time slots it needs during the next intra-cluster cycle by solving a Markov decision process (MDP), and (ii) the cluster head optimizes the scheduling decision based on the channel quality and an urgency factor. To conserve energy, we use a hybrid medium access scheme, i.e., time division multiple access (TDMA) for the intra-cluster communication phase and carrier sense multiple access with collision avoidance (CSMA/CA) for the cluster head-sink communication phase. The proposed MAC protocol is implemented and tested on a real underwater acoustic testbed using SM-75 acoustic modems by Teledyne Benthos. Simulations illustrate an improvement in network lifetime. Additionally, simulations demonstrate that the proposed scheduling scheme with urgency factor achieves a throughput increase of 28% and improves the reliability by up to 25% as compared to the scheduling scheme that neither use MDP nor optimization. Furthermore, testbed experiments show an improvement in throughput by up to 10% along with an improvement in reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.