Urotensin II (UII) is a cyclic peptide initially isolated from the caudal neurosecretory system of teleost fish. Subsequently, UII has been characterized from a frog brain extract, indicating that a gene encoding a UII precursor is also present in the genome of a tetrapod. Here, we report the characterization of the cDNAs encoding frog and human UII precursors and the localization of the corresponding mRNAs. In both frog and human, the UII sequence is located at the C-terminal position of the precursor. Human UII is composed of only 11 amino acid residues, while fish and frog UII possess 12 and 13 amino acid residues, respectively. The cyclic region of UII, which is responsible for the biological activity of the peptide, has been fully conserved from fish to human. Northern blot and dot blot analysis revealed that UII precursor mRNAs are found predominantly in the frog and human spinal cord. In situ hybridization studies showed that the UII precursor gene is actively expressed in motoneurons. The present study demonstrates that UII, which has long been regarded as a peptide exclusively produced by the urophysis of teleost fish, is actually present in the brain of amphibians and mammals. The fact that evolutionary pressure has acted to conserve fully the biologically active sequence of UII suggests that the peptide may exert important physiological functions in humans.
Urotensin II, a peptide hormone from the caudal neurosecretory system of the teleost, Gillichthys mirabilis, was isolated by using classical chromatographic techniques and high-performance liquid chromatography (HPLC). Direct microtechniques for sequence determination were used to establish its structure. Urotensin II from Gillichthys is a 1363-dalton dodecapeptide with the amino acid sequence AlaGly-Thr-Ala-Asp-Cys-Phe-Trp-Lys-Tyr-Cys-Val. This sequence is homologous with somatostatin in positions 1 and 2 and 7-9. The sequence has been verified by the production of a bioactive synthetic urotensin II. The possible chemical and physiological significance of its homology to somatostatin is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.