Ionic liquids are pure salts that are liquid under ambient conditions. As liquids composed solely of ions, the scientific consensus has been that ionic liquids have exceedingly high ionic strengths and thus very short Debye screening lengths. However, several recent experiments from laboratories around the world have reported data for the approach of two surfaces separated by ionic liquids which revealed remarkable long range forces that appear to be electrostatic in origin. Evidence has accumulated demonstrating long range surface forces for several different combinations of ionic liquids and electrically charged surfaces, as well as for concentrated mixtures of inorganic salts in solvent. The original interpretation of these forces, that ionic liquids could be envisioned as "dilute electrolytes," was controversial, and the origin of long range forces in ionic liquids remains the subject of discussion. Here we seek to collate and examine the evidence for long range surface forces in ionic liquids, identify key outstanding questions, and explore possible mechanisms underlying the origin of these long range forces. Long range surface forces in ionic liquids and other highly concentrated electrolytes hold diverse implications from designing ionic liquids for energy storage applications to rationalizing electrostatic correlations in biological self-assembly.
Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems.electrostatic interactions | intermolecular interactions | interfacial phenomena | Boltzmann distribution | activation energy E lectrolyte solutions are multicomponent liquids that are composed of ions (solutes) dissolved in a liquid phase (solvent), a classic example being salt water. Like any ideal mixture, the driving force for the dissolution of ions in electrolyte solutions is entropic. Unlike ideal mixtures, the long-range nature and high interaction free energy of the electrostatic interactions between ions ensures that the physical properties of all but the most dilute electrolyte solutions exhibit pronounced deviations from ideal behavior. These deviations primarily arise from the steric "crowding" of ions and the electrostatic correlation of ions, for example the formation of neutral ion pairs, both of which increase the range of electrostatic interactions, compared with ideal solutions (1). As a result, the development of a general conceptual picture of concentrated electrolyte solutions remains challenging. Nevertheless, electrolytes with high ionic concentrations are prevalent in biological systems (2) and technological applications, such as energy storage devices (3-5), so overcoming this challenge remains an important task.In this work, we study room-temperature ionic liquids (RTILs), ...
In this Article we described a ruthenium-catalysed carbonyl addition method for alcohol production via simple unsubstituted hydra-zone intermediates, but we inadvertently omitted the citation of two papers that had previously reported a similar carbanion reactivity 1,2. In these papers, the authors illustrated a series of substituted hindered hydrazones (for example, tert-butyl-, trityl-and diphenyl-4-pyri-dylmethyl) for additions to carbonyl compounds; however, to yield the target alcohols under these circumstances, the lithium salts of these hydrazones had to be pre-formed, with subsequent CC bond formation and removal of bulky substituents on azo-intermediates via radical decomposition. References 1. Baldwin, J. E. et al. Azo anions in synthesis: use of trityl-and diphenyl-4-pyridylmethylhydrazones for reductive C−C bond formation. Tetrahedron 42, 4235−4246 (1986). 2. Baldwin, J. E., Bottaro, J. C., Kolhe, J. N. & Adlington, R. M. Azo anions in synthesis. Use of trityl-and diphenyl-4-pyridylmethyl-hydrazones for reductive CC bond formation from aldehydes and ketones. J. Chem. Soc. Chem. Commun. 22−23 (1984). Addendum: Aldehydes as alkyl carbanion equivalents for additions to carbonyl compounds © 2 0 1 7 M a c m i l l a n P u b l i s h e r s L i m i t e d , p a r t o f S p r i n g e r N a t u r e. A l l r i g h t s r e s e r v e d .
Non-aqueous lithium-air batteries represent the next-generation energy storage devices with very high theoretical capacity. The benefit of lithium-air batteries is based on the assumption that the anodic lithium is completely reversible during the discharge-charge process. Here we report our investigation on the reversibility of the anodic lithium inside of an operating lithium-air battery using spatially and temporally resolved synchrotron X-ray diffraction and three-dimensional micro-tomography technique. A combined electrochemical process is found, consisting of a partial recovery of lithium metal during the charging cycle and a constant accumulation of lithium hydroxide under both charging and discharging conditions. A lithium hydroxide layer forms on the anode separating the lithium metal from the separator. However, numerous microscopic 'tunnels' are also found within the hydroxide layer that provide a pathway to connect the metallic lithium with the electrolyte, enabling sustained iontransport and battery operation until the total consumption of lithium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.