Summary Background Nociceptive sensitization is a tissue damage response whereby sensory neurons near damaged tissue enhance their responsiveness to external stimuli. This sensitization manifests as allodynia (aversive withdrawal to previously nonnoxious stimuli) and/or hyperalgesia (exaggerated responsiveness to noxious stimuli). Although some factors mediating nociceptive sensitization are known, inadequacies of current analgesic drugs have prompted a search for additional targets. Results Here we use a Drosophila model of thermal nociceptive sensitization to show that Hedgehog (Hh) signaling is required for both thermal allodynia and hyperalgesia following ultraviolet irradiation (UV)-induced tissue damage. Sensitization does not appear to result from developmental changes in the differentiation or arborization of nociceptive sensory neurons. Genetic analysis shows that Hh signaling acts in parallel to tumor necrosis factor (TNF) signaling to mediate allodynia and that distinct transient receptor potential (TRP) channels mediate allodynia and hyperalgesia downstream of these pathways. We also demonstrate a role for Hh in analgesic signaling in mammals. Intrathecal or peripheral administration of cyclopamine (CP), a specific inhibitor of Sonic Hedgehog signaling, blocked the development of analgesic tolerance to morphine (MS) or morphine antinociception in standard assays of inflammatory pain in rats and synergistically augmented and sustained morphine analgesia in assays of neuropathic pain. Conclusions We demonstrate a novel physiological role for Hh signaling, which has not previously been implicated in nociception. Our results also identify new potential therapeutic targets for pain treatment.
Treating pain is one of the most difficult challenges in medicine and a key facet of disease management. The isolation of morphine by Friedrich Sertürner in 1804 added an essential pharmacological tool in the treatment of pain and spawned the discovery of a new class of drugs known collectively as opioid analgesics. Revered for their potent pain-relieving effects, even Morpheus the god of dreams could not have dreamt that his opium tincture would be both a gift and a burden to humankind. To date, morphine and other opioids remain essential analgesics for alleviating pain. However, their use is plagued by major side effects, such as analgesic tolerance (diminished pain-relieving effects), hyperalgesia (increased pain sensitivity), and drug dependence. This review highlights recent advances in understanding the key causes of these adverse effects and explores the effect of chronic pain on opioid reward. Opioids and pain: scope of the problemIt is estimated that 20 -30% of Americans suffer from chronic pain, which is similar to that reported in Canada, Australia, and European countries (Blyth et al., 2001; Breivik et al., 2006;Johannes et al., 2010;Schopflocher et al., 2011). Equally striking is that chronic pain is among the most common forms of chronic illness afflicting individuals younger than 60 years of age (O'Connor, 2009). Chronic pain is also a major cause of disability (Manchikanti et al., 2013), and it is the cardinal feature of a diverse spectrum of diseases, including arthritis, migraine, cancer, metabolic disorders, and neuropathies. Treating pain in these diseases is notoriously difficult and often requires opioids, the most potent class of drugs used for controlling pain. Opioids are particularly effective for treating acute moderate-to-severe pain after surgery or trauma, and they are quintessential drugs in a physician's pharmacological toolbox for managing chronic pain. In 2012, physicians in the United States wrote Ͼ259 million opioid prescriptions, which equates to one bottle of pills for every adult American (according to the Centers for Disease Control and Prevention). Consumption of prescription opioids is highest in the United States and Canada, and, in these countries, opioid use for managing pain continues to grow (Gomes et al., 2014). Long-term opioid exposure can result in the development of analgesic tolerance, the hallmark feature of which is a loss in pain- Significance StatementChronic pain is pervasive and afflicts Ͼ100 million Americans. Treating pain in these individuals is notoriously difficult and often requires opioids, one of the most powerful and effective classes of drugs used for controlling pain. However, their use is plagued by major side effects, such as a loss of pain-relieving effects (analgesic tolerance), paradoxical pain (hyperalgesia), and addiction. Despite the potential side effects, opioids remain the pharmacological cornerstone of modern pain therapy. This review highlights recent breakthroughs in understanding the key causes of these adverse effects and expl...
Objective Opioids have relieved more human suffering than any other medication, but their use is still fraught with significant concerns of misuse, abuse, and addiction. This theoretical article explores the hypothesis that opioid misuse in the context of pain management produces a hypersensitivity to emotional distress, termed hyperkatifeia. Results In the misuse of opioids, neural substrates that mediate positive emotional states (brain reward systems) are compromised, and substrates mediating negative emotional states (brain stress systems) are enhanced. A reflection and early marker of such a nonhomeostatic state may be the development of opioid-induced hyperkatifeia, defined as the increased intensity of the constellation of negative emotional/motivational symptoms and signs observed during withdrawal from drugs of abuse (derived from the Greek “katifeia” for dejection or negative emotional state) and is most likely to occur in subjects in whom the opioid produces a break with homeostasis and less likely to occur when the opioid is restoring homeostasis, such as in effective pain treatment. When the opioid appropriately relieves pain, opponent processes are not engaged. However, if the opioid is administered in excess of need because of overdose, pharmacokinetic variables, or treating an individual without pain, then the body will react to that perturbation by engaging opponent processes in the domains of both pain (hyperalgesia) and negative emotional states (hyperkatifeia). Conclusions Repeated engagement of opponent processes without time for the brain’s emotional systems to reestablish homeostasis will further drive changes in emotional processes that may produce opioid abuse or addiction, particularly in individuals with genetic or environmental vulnerability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.