New objective methods are introduced that use readily available data to estimate various aspects of the two-dimensional surface wind field structure in hurricanes. The methods correlate a variety of wind field metrics to combinations of storm intensity, storm position, storm age, and information derived from geostationary satellite infrared (IR) imagery. The first method estimates the radius of maximum wind (RMW) in special cases when a clear symmetric eye is identified in the IR imagery. The second method estimates RMW, and the additional critical wind radii of 34-, 50-, and 64-kt winds for the general case with no IR scene-type constraint. The third method estimates the entire two-dimensional surface wind field inside a storm-centered disk with a radius of 182 km. For each method, it is shown that the inclusion of infrared satellite data measurably reduces error. All of the methods can be transitioned to an operational setting or can be used as a postanalysis tool.
The impacts of special Geostationary Operational Environmental Satellite (GOES) rapid-scan (RS) wind observations on numerical model 24-120-h track forecasts of Hurricane Katrina are examined in a series of data assimilation and forecast experiments. The RS wind vectors are derived from geostationary satellites by tracking cloud motions through successive 5-min images. In these experiments, RS wind observations are added over the area 158-608N, 608-1108W, and they supplement the observations used in operational forecasts. The inclusion of RS wind observations reduces errors in numerical forecasts of the Katrina landfall position at 1200 UTC 29 August 2005 by an average of 12% compared to control cases that include ''targeted'' dropsonde observations in the Katrina environment. The largest average improvements are made to the 84-to 120-h Katrina track forecasts, rather than to the short-range track forecasts. These results suggest that RS wind observations can potentially be used in future cases to improve track forecasts of tropical cyclones.
Enhanced atmospheric motion vectors (AMVs) produced from the geostationary Multifunctional Transport Satellite (MTSAT) are assimilated into the U.S. Navy Operational Global Atmospheric Prediction System (NOGAPS) to evaluate the impact of these observations on tropical cyclone track forecasts during the simultaneous western North Pacific Ocean Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (TPARC) and the Tropical Cyclone Structure-2008 (TCS-08) field experiments. Four-dimensional data assimilation is employed to take advantage of experimental high-resolution (space and time) AMVs produced for the field campaigns by the Cooperative Institute for Meteorological Satellite Studies. Two enhanced AMV datasets are considered: 1) extended periods produced at hourly intervals over a large western North Pacific domain using routinely available MTSAT imagery and 2) limited periods over a smaller storm-centered domain produced using special MTSAT rapid-scan imagery. Most of the locally impacted forecast cases involve Typhoons Sinlaku and Hagupit, although other storms are also examined. On average, the continuous assimilation of the hourly AMVs reduces the NOGAPS tropical cyclone track forecast errors-in particular, for forecasts longer than 72 h. It is shown that the AMVs can improve the environmental flow analyses that may be influencing the tropical cyclone tracks. Adding rapid-scan AMV observations further reduces the NOGAPS forecast errors. In addition to their benefit in traditional data assimilation, the enhanced AMVs show promise as a potential resource for advanced objective data-targeting methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.