The threat of bioterrorism has stimulated interest in enhancing public health surveillance to detect disease outbreaks more rapidly than is currently possible. To advance research on improving the timeliness of outbreak detection, the Defense Advanced Research Project Agency sponsored the Bio-event Advanced Leading Indicator Recognition Technology (BioALIRT) project beginning in 2001. The purpose of this paper is to provide a synthesis of research on outbreak detection algorithms conducted by academic and industrial partners in the BioALIRT project. We first suggest a practical classification for outbreak detection algorithms that considers the types of information encountered in surveillance analysis. We then present a synthesis of our research according to this classification. The research conducted for this project has examined how to use spatial and other covariate information from disparate sources to improve the timeliness of outbreak detection. Our results suggest that use of spatial and other covariate information can improve outbreak detection performance. We also identified, however, methodological challenges that limited our ability to determine the benefit of using outbreak detection algorithms that operate on large volumes of data. Future research must address challenges such as forecasting expected values in high-dimensional data and generating spatial and multivariate test data sets.
For robust detection performance, traditional control chart monitoring for biosurveillance is based on input data free of trends, day-of-week effects, and other systematic behaviour. Time series forecasting methods may be used to remove this behaviour by subtracting forecasts from observations to form residuals for algorithmic input. We describe three forecast methods and compare their predictive accuracy on each of 16 authentic syndromic data streams. The methods are (1) a non-adaptive regression model using a long historical baseline, (2) an adaptive regression model with a shorter, sliding baseline, and (3) the Holt-Winters method for generalized exponential smoothing. Criteria for comparing the forecasts were the root-mean-square error, the median absolute per cent error (MedAPE), and the median absolute deviation. The median-based criteria showed best overall performance for the Holt-Winters method. The MedAPE measures over the 16 test series averaged 16.5, 11.6, and 9.7 for the non-adaptive regression, adaptive regression, and Holt-Winters methods, respectively. The non-adaptive regression forecasts were degraded by changes in the data behaviour in the fixed baseline period used to compute model coefficients. The mean-based criterion was less conclusive because of the effects of poor forecasts on a small number of calendar holidays. The Holt-Winters method was also most effective at removing serial autocorrelation, with most 1-day-lag autocorrelation coefficients below 0.15. The forecast methods were compared without tuning them to the behaviour of individual series. We achieved improved predictions with such tuning of the Holt-Winters method, but practical use of such improvements for routine surveillance will require reliable data classification methods.
Background: The District of Columbia (DC) Department of Health, under a grant from the US Centers for Disease Control and Prevention, established an Environmental Public Health Tracking Program. As part of this program, the goals of this contextual pilot study are to quantify short-term associations between daily pediatric emergency department (ED) visits and admissions for asthma exacerbations with ozone and particulate concentrations, and broader associations with socioeconomic status and age group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.