We consider a class of iterative algorithms for solving systems of linear equations where the coefficient matrix is nonsymmetric with positive-definite symmetric part. The algorithms are modelled after the conjugate gradient method, and are well suited for large sparse systems. They do not make use of any associated symmetric problems. Convergence results and error bounds are presented.
The subject of this book is the efficient solution of partial differential equations (PDEs) that arise when modelling incompressible fluid flow. The first part (Chapters 1 through 5) covers the Poisson equation and the Stokes equations. For each PDE, there is a chapter concerned with finite element discretization and a companion chapter concerned with efficient iterative solution of the algebraic equations obtained from discretization. Chapter 5 describes the basics of PDE-constrained optimization. The second part of the book (Chapters 6 to 11) is a more advanced introduction to the numerical analysis of incompressible flows. It starts with four chapters on the convection–diffusion equation and the steady Navier–Stokes equations, organized by equation with a chapter describing discretization coupled with a companion concerned with iterative solution algorithms. The book concludes with two chapters describing discretization and solution methods for models of unsteady flow and buoyancy-driven flow.
Deterministic models of fluid flow and the transport of chemicals in flows in heterogeneous porous media incorporate partial differential equations (PDEs) whose material parameters are assumed to be known exactly. To tackle more realistic stochastic flow problems, it is fitting to represent the permeability coefficients as random fields with prescribed statistics. Traditionally, large numbers of deterministic problems are solved in a Monte Carlo framework and the solutions are averaged to obtain statistical properties of the solution variables. Alternatively, so-called stochastic finite-element methods (SFEMs) discretize the probabilistic dimension of the PDE directly leading to a single structured linear system. The latter approach is becoming extremely popular but its computational cost is still perceived to be problematic as this system is orders of magnitude larger than for the corresponding deterministic problem. A simple block-diagonal preconditioning strategy incorporating only the mean component of the random field coefficient and based on incomplete factorizations has been employed in the literature and observed to be robust, for problems of moderate variance, but without theoretical analysis. We solve the stochastic Darcy flow problem in primal formulation via the spectral SFEM and focus on its efficient iterative solution. To achieve optimal computational complexity, we base our block-diagonal preconditioner on algebraic multigrid. In addition, we provide new theoretical eigenvalue bounds for the preconditioned system matrix. By highlighting the dependence of these bounds on all the SFEM parameters, we illustrate, in particular, why enriching the stochastic approximation space leads to indefinite system matrices when unbounded random variables are employed.
Standard multigrid algorithms have proven ine ective for the solution of discretizations of Helmholtz equations. In this work we modify the standard algorithm by adding GMRES iterations at coarse levels and as an outer iteration. We demonstrate the algorithm's e ectiveness through theoretical analysis of a model problem and experimental results. In particular, we show that the combined use of GMRES as a smoother and outer iteration produces an algorithm whose performance depends relatively mildly on wave number and is robust for normalized wave numbers as large as two hundred. For xed wave numbers, it displays grid-independent convergence rates and has costs proportional to number of unknowns.Abstract. Standard multigrid algorithms have proven ine ective for the solution of discretizations of Helmholtz equations. In this work we modify the standard algorithm by adding GMRES iterations at coarse levels and as an outer iteration. We demonstrate the algorithm's e ectiveness through theoretical analysis of a model problem and experimental results. In particular, we show that the combined use of GMRES as a smoother and outer iteration produces an algorithm whose performance depends relatively mildly on wave number and is robust for normalized wave numbers as large as two hundred. For xed wave numbers, it displays grid-independent convergence rates and has costs proportional to number of unknowns.
Abstract. Variants of the Uzawa algorithm for solving symmetric indefinite linear systems are developed and analyzed. Each step of this algorithm requires the solution of a symmetric positivedefinite system of linear equations. It is shown that if this computation is replaced by an approximate solution produced by an arbitrary iterative method, then with relatively modest requirements on the accuracy of the approximate solution, the resulting inexact Uzawa algorithm is convergent, with a convergence rate close to that of the exact algorithm. In addition, it is shown that preconditioning can be used to improve performance. The analysis is illustrated and supplemented using several examples derived from mixed finite element discretization of the Stokes equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.