The epithelial-to-mesenchymal transition (EMT) is the development of increased cell plasticity that occurs normally during wound healing and embryonic development and can be coopted for cancer invasion and metastasis. TGF-beta induces EMT but the mechanism is unclear. Our studies suggest Nox4, a member of the NADPH oxidase (Nox) family, is a source of reactive oxygen species (ROS) affecting cell migration and fibronectin expression, an EMT marker, in normal and metastatic breast epithelial cells. We found TGF-beta induces Nox4 expression (mRNA and protein) and ROS generation in normal (MCF10A) and metastatic (MDA-MB-231) human breast epithelial cells. Conversely, cells expressing a dominant-negative form of Nox4 or Nox4-targeted shRNA showed significantly lower ROS production upon TGF-beta treatment. Expression of a constitutively active TGF-beta receptor type I significantly increased Nox4 promoter activity, mRNA and protein expression, and ROS generation. Nox4 transcriptional regulation by TGF-beta was SMAD3-dependent based on the effect of constitutively active SMAD3 increasing Nox4 promoter activity, whereas dominant-negative SMAD3 or SIS3, a SMAD3-specific inhibitor, had the opposite effect. Furthermore, Nox4 knockdown, dominant-negative Nox4 or SMAD3, or SIS3 blunted TGF-beta induced wound healing and cell migration, whereas cell proliferation was not effected. Our experiments further indicate Nox4 plays a role in TGF-beta regulation of fibronectin mRNA expression, based on the effects of dominant-negative Nox4 in reducing fibronectin mRNA in TGF-beta treated MDA-MB-231and MCF10A cells. Collectively, these data indicate Nox4 contributes to NADPH oxidase-dependent ROS production that may be critical for progression of the EMT in breast epithelial cells, and thereby has therapeutic implications.
Viral hepatitis-induced oxidative stress accompanied by increased levels of transforming growth factor  (TGF-) and hepatic fibrosis are hallmarks of hepatitis C virus (HCV) infection. The mechanisms of redox regulation in the pathogenesis of HCV-induced liver disease are not clearly understood. The results of our current studies suggest that reactive oxygen species (ROS) derived from Nox4, a member of the NADPH oxidase (Nox) family, could play a role in HCV-induced liver disease. We found that the expression of HCV (genotype 1a) cDNA constructs (full-length and subgenomic), core protein alone, viral RNA, or replicating HCV (JFH-AM2) induced Nox4 mRNA expression and ROS generation in human hepatocyte cell lines (Huh-7, Huh-7.5, HepG2, and CHL). Conversely, hepatocytes expressing Nox4 short hairpin RNA (shRNA) or an inactive dominant negative form of Nox4 showed decreased ROS production when cells were transfected with HCV. The promoters of both human and murine Nox4 were used to demonstrate transcriptional regulation of Nox4 mRNA by HCV, and a luciferase reporter tied to an ϳ2-kb promoter region of Nox4 identified HCVresponsive regulatory regions modulating the expression of Nox4. Furthermore, the human Nox4 promoter was responsive to TGF-1, and the HCV core-dependent induction of Nox4 was blocked by antibody against TGF- or the expression of dominant negative TGF- receptor type II. These findings identified HCV as a regulator of Nox4 gene expression and subsequent ROS production through an autocrine TGF--dependent mechanism. Collectively, these data provide evidence that HCV-induced Nox4 contributes to ROS production and may be related to HCV-induced liver disease.
Background:Transforming growth factor-beta (TGF-β) induces the epithelial-to-mesenchymal transition (EMT) leading to increased cell plasticity at the onset of cancer cell invasion and metastasis. Mechanisms involved in TGF-β-mediated EMT and cell motility are unclear. Recent studies showed that p53 affects TGF-β/SMAD3-mediated signalling, cell migration, and tumorigenesis. We previously demonstrated that Nox4, a Nox family NADPH oxidase, is a TGF-β/SMAD3-inducible source of reactive oxygen species (ROS) affecting cell migration and fibronectin expression, an EMT marker, in normal and metastatic breast epithelial cells. Our present study investigates the involvement of p53 in TGF-β-regulated Nox4 expression and cell migration.Methods:We investigated the effect of wild-type p53 (WT-p53) and mutant p53 proteins on TGF-β-regulated Nox4 expression and cell migration. Nox4 mRNA and protein, ROS production, cell migration, and focal adhesion kinase (FAK) activation were examined in three different cell models based on their p53 mutational status. H1299, a p53-null lung epithelial cell line, was used for heterologous expression of WT-p53 or mutant p53. In contrast, functional studies using siRNA-mediated knockdown of endogenous p53 were conducted in MDA-MB-231 metastatic breast epithelial cells that express p53-R280K and MCF-10A normal breast cells that have WT-p53.Results:We found that WT-p53 is a potent suppressor of TGF-β-induced Nox4, ROS production, and cell migration in p53-null lung epithelial (H1299) cells. In contrast, tumour-associated mutant p53 proteins (R175H or R280K) caused enhanced Nox4 expression and cell migration in both TGF-β-dependent and TGF-β-independent pathways. Moreover, knockdown of endogenous mutant p53 (R280K) in TGF-β-treated MDA-MB-231 metastatic breast epithelial cells resulted in decreased Nox4 protein and reduced phosphorylation of FAK, a key regulator of cell motility. Expression of WT-p53 or dominant-negative Nox4 decreased TGF-β-mediated FAK phosphorylation, whereas mutant p53 (R280K) increased phospho-FAK. Furthermore, knockdown of WT-p53 in MCF-10A normal breast epithelial cells increased basal Nox4 expression, whereas p53-R280K could override endogenous WT-p53 repression of Nox4. Remarkably, immunofluorescence analysis revealed MCF-10A cells expressing p53-R280K mutant showed an upregulation of Nox4 in both confluent and migrating cells.Conclusions:Collectively, our findings define novel opposing functions for WT-p53 and mutant p53 proteins in regulating Nox4-dependent signalling in TGF-β-mediated cell motility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.