We constructed an infectious molecular clone of acquired immunodeficiency syndrome-associated retrovirus. Upon transfection, this clone directed the production of infectious virus particles in a wide variety of cells in addition to human T4 cells. The progeny, infectious virions, were synthesized in mouse, mink, monkey, and several human non-T cell lines, indicating the absence of any intracellular obstacle to viral RNA or protein production or assembly. During the course of these studies, a human colon carcinoma cell line, exquisitely sensitive to DNA transfection, was identified. * Corresponding author. MATERIALS AND METHODS Cells. The cell lines used in these studies are listed in Table 10 [ig of uncleaved plasmid DNA in each assay. Virus production was monitored in non-T4 cells by cocultivation with CD4+ A3.01 cells (106 cells of each type) 2 days after transfection. Reverse transcriptase (RT) assays were carried 284
Infection with the human immunodeficiency virus-1 (HIV-1) can induce severe and debilitating neurological problems that include behavioral abnormalities, motor dysfunction and frank dementia. After infiltrating peripheral immune competent cells, in particular macrophages, HIV-1 provokes a neuropathological response involving all cell types in the brain. HIV-1 also incites activation of chemokine receptors, inflammatory mediators, extracellular matrix-degrading enzymes and glutamate receptor-mediated excitotoxicity, all of which can trigger numerous downstream signaling pathways and disrupt neuronal and glial function. This review will discuss recently uncovered pathologic neuroimmune and degenerative mechanisms contributing to neuronal damage induced by HIV-1 and potential approaches for development of future therapeutic intervention.
BackgroundThe neuropathology of Parkinson's disease (PD) includes loss of dopaminergic neurons in the substantia nigra, nitrated α-synuclein (N-α-Syn) enriched intraneuronal inclusions or Lewy bodies and neuroinflammation. While the contribution of innate microglial inflammatory activities to disease are known, evidence for how adaptive immune mechanisms may affect the course of PD remains obscure. We reasoned that PD-associated oxidative protein modifications create novel antigenic epitopes capable of peripheral adaptive T cell responses that could affect nigrostriatal degeneration.Methods and FindingsNitrotyrosine (NT)-modified α-Syn was detected readily in cervical lymph nodes (CLN) from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxicated mice. Antigen-presenting cells within the CLN showed increased surface expression of major histocompatibility complex class II, initiating the molecular machinery necessary for efficient antigen presentation. MPTP-treated mice produced antibodies to native and nitrated α-Syn. Mice immunized with the NT-modified C-terminal tail fragment of α-Syn, but not native protein, generated robust T cell proliferative and pro-inflammatory secretory responses specific only for the modified antigen. T cells generated against the nitrated epitope do not respond to the unmodified protein. Mice deficient in T and B lymphocytes were resistant to MPTP-induced neurodegeneration. Transfer of T cells from mice immunized with N-α-Syn led to a robust neuroinflammatory response with accelerated dopaminergic cell loss.ConclusionsThese data show that NT modifications within α-Syn, can bypass or break immunological tolerance and activate peripheral leukocytes in draining lymphoid tissue. A novel mechanism for disease is made in that NT modifications in α-Syn induce adaptive immune responses that exacerbate PD pathobiology. These results have implications for both the pathogenesis and treatment of this disabling neurodegenerative disease.
Stlmmsr~Human immunodeficiency virus (HIV) infection of brain macrophages and astroglial proliferation are central features of HIV-induced central nervous system (CNS) disorders. These observations suggest that glial cellular interactions participate in disease. In an experimental system to examine this process, we found that cocultures of HIV-infected monocytes and astroglia release high levels of cytokines and arachidonate metabolites leading to neuronotoxicity. HIV-l^D^-infected monocytes cocultured with human glia (astrocytoma, neuroglia, and primary human astrocytes) synthesized tumor necrosis factor (TNF-o 0 and interleukin 1B (IblB) as assayed by coupled reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, and biological activity. The cytokine induction was selective, cell specific, and associated with induction of arachidonic acid metabolites. TNF-B, Iblc~, IL-6, interferon c~ (IFN-c~), and IFN-'y were not produced. Leukotriene B4, leukotriene D4, lipoxin A4, and platelet-activating factor were detected in large amounts after high-performance liquid chromatography separation and correlated with cytokine activity. Specific inhibitors of the arachidonic cascade markedly diminished the cytokine response suggesting regulatory relationships between these factors. Cocultures of HIV-infected monocytes and neuroblastoma or endothelial cells, or HIV-infected monocyte fluids, sucrose gradient-concentrated viral particles, and paraformaldehyde-fixed or freeze-thawed HIV-infected monocytes placed onto astroglia failed to induce cytokines and neuronotoxins. This demonstrated that viable monocyte-astroglia interactions were required for the cell reactions. The addition of actinomycin D or cycloheximide to the HIV-infected monocytes before coculture reduced, >2.5-fold, the levels of TNF-o~. These results, taken together, suggest that the neuronotoxicity associated with HIV central nervous system disorders is mediated, in part, through cytokines and arachidonic acid metabolites, produced during cell-to-cell interactions between HIV-infected brain macrophages and astrocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.