Anthrax lethal toxin (LT), a virulence factor secreted by Bacillus anthracis, is selectively toxic to human melanomas with the BRAF V600E activating mutation because of its proteolytic activities toward the mitogen-activated protein kinase kinases (MEKs). To develop LT variants with lower in vivo toxicity and high tumor specificity, and therefore greater potential for clinical use, we generated a mutated LT that requires activation by matrix metalloproteinases (MMPs). This engineered toxin was less toxic than wild-type LT to mice because of the limited expression of MMPs by normal cells. Moreover, the systemically administered toxin produced greater anti-tumor effects than wild-type LT toward human xenografted tumors. This was shown to result from its greater bioavailability, a consequence of the limited uptake and clearance of the modified toxin by normal cells. Furthermore, the MMP-activated LT had very potent anti-tumor activity not only to human melanomas containing the BRAF mutation but also to other tumor types, including lung and colon carcinomas regardless of their BRAF status. Tumor histology and in vivo angiogenesis assays showed that this antitumor activity is due largely to the indirect targeting of tumor vasculature and angiogenic processes. Thus, even tumors genetically deficient in anthrax toxin receptors were still susceptible to the toxin therapy in vivo. Moreover, the modified toxin also displayed lower immunogenicity compared with the wild-type toxin. All these properties suggest that this MMP-activated antitumor toxin has potential for use in cancer therapy.
Aims: Kaposi's sarcoma (KS), caused by the Kaposi's sarcoma herpesvirus (KSHV), is an AIDS-associated cancer characterized by angiogenesis and proliferation of spindle cells. Rac1-activated reactive oxygen species (ROS) production has been implicated in KS tumorigenesis. We used an animal model of KSHV-induced Kaposi's sarcomagenesis (mECK36) to study the role of ROS in KS and the efficacy of N-acetyl l-cysteine (NAC) in inhibiting or preventing KS. Results: Signaling by the KSHV early lytic gene viral G protein-coupled receptor (vGPCR) activated ROS production in mECK36 cells via a Rac1-NADPH oxidase pathway. Induction of the lytic cycle in KSHV-infected KS spindle cells upregulated ROS along with upregulation of vGPCR expression. We also found that expression of the major latent transcript in 293 cells increased ROS levels. ROS scavenging with NAC halted mECK36 tumor growth in a KSHV-specific manner. NAC inhibited KSHV latent gene expression as well as tumor angiogenesis and lymphangiogenesis. These effects correlated with the reduction of vascular endothelial growth factor (VEGF), c-myc, and cyclin D1, and could be explained on the basis of inhibition of STAT3 tyrosine phosphorylation. NAC prevented mECK36 de novo tumor formation. Molecular analysis of NAC-resistant tumors revealed a strong upregulation of Rac1 and p40 PHOX. Innovation and Conclusion: Our results demonstrate that ROS-induction by KSHV plays a causal role in KS oncogenesis by promoting proliferation and angiogenesis. Our results show that both ROS and their molecular sources can be targeted therapeutically using NAC or other Food and Drug Administration (FDA)approved inhibitors for prevention and treatment of AIDS-KS. Antioxid. Redox Signal. 18, 80-90.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.