Magnesium/calcium data from planktonic foraminifera in equatorial Pacific sediment cores demonstrate that tropical Pacific sea surface temperatures (SSTs) were 2.8 degrees +/- 0.7 degrees C colder than the present at the last glacial maximum. Glacial-interglacial temperature differences as great as 5 degrees C are observed over the last 450 thousand years. Changes in SST coincide with changes in Antarctic air temperature and precede changes in continental ice volume by about 3 thousand years, suggesting that tropical cooling played a major role in driving ice-age climate. Comparison of SST estimates from eastern and western sites indicates that the equatorial Pacific zonal SST gradient was similar or somewhat larger during glacial episodes. Extraction of a salinity proxy from the magnesium/calcium and oxygen isotope data indicates that transport of water vapor into the western Pacific was enhanced during glacial episodes.
[1] Optimal use of Mg/Ca as a paleotemperature proxy requires establishing calibrations for different species of foraminifera and quantifying the influence of dissolution. To achieve this goal, we have measured Mg/Ca and d 18 O in a series of tropircal and subtropical core tops, including four depth transects: the Ceara Rise, the Sierra Leone Rise, and the Rio Grande Plateau in the Atlantic, and the Ontong Java Plateau in the Pacific, focusing on spinose mixed layer dwelling species Globigerinoides ruber and Globigerinoides sacculifer, and nonspinose thermocline dwelling Neogloboquadrina dutertrei. Shell Mg/ Ca in G. sacculifer is 5-15% lower than in G. ruber, while N. dutertrei Mg/Ca is 49-55% lower than in G. ruber. This statistically significant offset has allowed us to establish different calibrations for each species. Multilinear regression analysis was used to develop calibration equations that include a correction term for the dissolution effect on Mg/Ca in foraminiferal calcite. Presented in this paper are two sets of calibrations; one set using core depth as a dissolution correction and another using ÁCO 3 2À as a dissolution parameter. The calibrations suggest that G. ruber is the most accurate recorder of surface temperature, while G. sacculifer records temperatures below the surface at 20-30 m. The depth habitat of N. dutertrei is more uncertain, owing to the wide range in habitat depths depending on hydrographic conditions, but on average, Mg/Ca and d 18 O data suggest it is at $50 m. Of the three species, N. dutertrei is the most sensitive to dissolution (up to 23% decrease in shell Mg/Ca per km), while G. sacculifer is the most resistant.
Abstract. Cultured planktonic foraminifera, Orbulina universa (symbiotic) and Globigerina bulloides (nonsymbiotic), are used to reexamine temperature:fi180 relationships at 15ø-25øC. Relationships for both species can be described by
essentially induced by local modifications of the electronic properties of a surface near chemisorbed particles and hence, we believe, are of general importance for chemical processes at surfaces whenever the diffusion lengths of adsorbing species reach critical values compared with their lateral distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.