Diets rich in broccoli (Brassica oleracea var italica) have been associated with maintenance of cardiovascular health and reduction in risk of cancer. These health benefits have been attributed to glucoraphanin that specifically accumulates in broccoli. The development of broccoli with enhanced concentrations of glucoraphanin may deliver greater health benefits.Three high-glucoraphanin F1 broccoli hybrids were developed in independent programmes through genome introgression from the wild species Brassica villosa. Glucoraphanin and other metabolites were quantified in experimental field trials. Global SNP analyses quantified the differential extent of B. villosa introgressionThe high-glucoraphanin broccoli hybrids contained 2.5–3 times the glucoraphanin content of standard hybrids due to enhanced sulphate assimilation and modifications in sulphur partitioning between sulphur-containing metabolites. All of the high-glucoraphanin hybrids possessed an introgressed B. villosa segment which contained a B. villosa Myb28 allele. Myb28 expression was increased in all of the high-glucoraphanin hybrids. Two high-glucoraphanin hybrids have been commercialised as Beneforté® broccoli.The study illustrates the translation of research on glucosinolate genetics from Arabidopsis to broccoli, the use of wild Brassica species to develop cultivars with potential consumer benefits, and the development of cultivars with contrasting concentrations of glucoraphanin for use in blinded human intervention studies.
Vatdiospyroidol (1), a novel cytotoxic resveratrol tetramer, was isolated from the stems of Vatica diospyroides Sym. (Dipterocarpaceae) by bioassay-guided fractionation monitored with a human oral epidermoid carcinoma (KB) cell line. Another novel resveratrol tetramer, vaticaphenol A (2), was obtained as a noncytotoxic constituent, along with the known compounds, bergenin, betulin, betulinic acid, mangiferonic acid, and (E)-resveratrol 3-O-β-d-glucopyranoside. The structures of compounds 1 and 2 were elucidated by spectral analysis, including 1D and 2D NMR experiments, and by molecular modeling.
Swertifrancheside [1], a new flavonone-xanthone glucoside isolated from Swertia franchetiana, 1 beta-hydroxyaleuritolic acid 3-p-hydroxybenzoate [2], a triterpene isolated from the roots of Maprounea africana, and protolichesterinic acid [3], an aliphatic alpha-methylene-gamma-lactone isolated from the lichen Cetraria islandica, were found to be potent inhibitors of the DNA polymerase activity of human immunodeficiency virus-1 reverse transcriptase (HIV-1 RT), with 50% inhibitory doses (IC50 values) of 43, 3.7, and 24 microM, respectively. They were not cytotoxic with cultured mammalian cells. The kinetic mechanisms by which compounds 1-3 inhibited HIV-1 RT were studied as was their potential to inhibit other nucleic acid polymerases. Swertifrancheside [1] bound to DNA and was shown to be a competitive inhibitor with respect to template-primer, but a mixed-type competitive inhibitor with respect to TTP. On the other hand, 1 beta-hydroxyaleuritolic acid 3-p-hydroxybenzoate [2] and protolichesterinic acid [3] were mixed-type competitive inhibitors with respect to template-primer and noncompetitive inhibitors with respect to TTP. Therefore, the mechanism of action of 1 beta-hydroxyaleuritolic acid 3-p-hydroxybenzoate [2] and protolichesterinic acid [3] as HIV-1 RT inhibitors involves nonspecific binding to the enzyme at nonsubstrate binding sites, whereas swertifrancheside [1] inhibits enzyme activity by binding to the template-primer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.