It has been speculated that heart valve interstitial cells (VICs) maintain valvular tissue homeostasis through regulated extracellular matrix (primarily collagen) biosynthesis. VICs appear to be phenotypically plastic, inasmuch as they transdifferentiate into myofibroblasts during valve development, disease, and remodeling. Under normal physiological conditions, transvalvular pressures (TVPs) on the right and left side of the heart are vastly different. Hence, we hypothesize that higher left-side TVPs impose larger local tissue stress on VICs, which increases their stiffness through cytoskeletal composition, and that this relation affects collagen biosynthesis. To evaluate this hypothesis, isolated ovine VICs from the four heart valves were subjected to micropipette aspiration to assess cellular stiffness, and cytoskeletal composition and collagen biosynthesis were quantified by using the surrogates smooth muscle alpha-actin (SMA) and heat shock protein 47 (HSP47), respectively. VICs from the aortic and mitral valves were significantly stiffer (P < 0.001) than those from the pulmonary and tricuspid valves. Left-side isolated VICs contained significantly more (P < 0.001) SMA and HSP47 than right-side VICs. Mean VIC stiffness correlated well (r = 0.973) with TVP; SMA and HSP47 also correlated well (r = 0.996) with one another. Assays were repeated for VICs in situ, and, as with in vitro results, left-side VIC protein levels were significantly greater (P < 0.05). These findings suggest that VICs respond to local tissue stress by altering cellular stiffness (through SMA content) and collagen biosynthesis. This functional VIC stress-dependent biosynthetic relation may be crucial in maintaining valvular tissue homeostasis and also prove useful in understanding valvular pathologies.
Background-Phenotypically, the aortic valve interstitial cell (AVIC) is a dynamic myofibroblast, appearing contractile and activated in times of development, disease, and remodeling. The precise mechanism of phenotypic modulation is unclear, but it is speculated that both biomechanical and biochemical factors are influential. Therefore, we hypothesized that isolated and combined treatments of cyclic tension and TGF-β1 would alter the phenotype and subsequent collagen biosynthesis of AVICs in situ.
These studies with an ovine modified panel reactive antibody assay confirmed minimal immune allosensitization to transplanted decellularized tissue patches. Qualifying criteria for putative tissue-engineered scaffolds should include minimal recipient panel reactive antibody response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.