The Ehlers-Danlos syndromes (EDS) are a clinically and genetically heterogeneous group of heritable connective tissue disorders (HCTDs) characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. Over the past two decades, the Villefranche Nosology, which delineated six subtypes, has been widely used as the standard for clinical diagnosis of EDS. For most of these subtypes, mutations had been identified in collagenencoding genes, or in genes encoding collagen-modifying enzymes. Since its publication in 1998, a whole spectrum of novel EDS subtypes has been described, and mutations have been identified in an array of novel genes. The International EDS Consortium proposes a revised EDS classification, which recognizes 13 subtypes. For each of the subtypes, we propose a set of clinical criteria that are suggestive for the diagnosis. However, in view of the vast genetic heterogeneity and phenotypic variability of the EDS subtypes, and the clinical overlap between EDS subtypes, but also with other HCTDs, the definite diagnosis of all EDS subtypes, except for the hypermobile type, relies on molecular confirmation with identification of (a) causative genetic variant(s). We also revised the clinical criteria for hypermobile EDS in order to allow for a better distinction from other joint hypermobility disorders. To satisfy research needs, we also propose a pathogenetic scheme, that regroups EDS subtypes for which the causative proteins function within the same pathway. We hope that the revised International EDS Classification will serve as a new standard for the diagnosis of EDS and will provide a framework for future research purposes.
In the last decade, growing attention has been placed on joint hypermobility and related disorders. The new nosology for Ehlers-Danlos syndrome (EDS), the best-known and probably the most common of the disorders featuring joint hypermobility, identifies more than 20 different types of EDS, and highlights the need for a single set of criteria to substitute the previous ones for the overlapping EDS hypermobility type and joint hypermobility syndrome. Joint hypermobility is a feature commonly encountered in many other disorders, both genetic and acquired, and this finding is attracting the attention of an increasing number of medical and non-medical disciplines. In this paper, the terminology of joint hypermobility and related disorders is summarized. Different types of joint hypermobility, its secondary musculoskeletal manifestations and a simplified categorization of genetic syndromes featuring joint hypermobility are presented. The concept of a spectrum of pathogenetically related manifestations of joint hypermobility intersecting the categories of pleiotropic syndromes with joint hypermobility is introduced. A group of hypermobility spectrum disorders is proposed as diagnostic labels for patients with symptomatic joint hypermobility but not corresponding to any other syndromes with joint hypermobility.
Loeys-Dietz syndrome (LDS) associates with a tissue signature for high transforming growth factor (TGF)-β signaling but is often caused by heterozygous mutations in genes encoding positive effectors of TGF-β signaling, including either subunit of the TGF-β receptor or SMAD3, thereby engendering controversy regarding the mechanism of disease. Here, we report heterozygous mutations or deletions in the gene encoding the TGF-β2 ligand for a phenotype within the LDS spectrum and show upregulation of TGF-β signaling in aortic tissue from affected individuals. Furthermore, haploinsufficient Tgfb2+/− mice have aortic root aneurysm and biochemical evidence of increased canonical and noncanonical TGF-b signaling. Mice that harbor both a mutant Marfan syndrome (MFS) allele (Fbn1C1039G/+) and Tgfb2 haploinsufficiency show increased TGF-β signaling and phenotypic worsening in association with normalization of TGF-β2 expression and high expression of TGF-β1. Taken together, these data support the hypothesis that compensatory autocrine and/or paracrine events contribute to the pathogenesis of TGF-β–mediated vasculopathies.
The hypermobile type of Ehlers-Danlos syndrome (hEDS) is likely the most common hereditary disorder of connective tissue. It has been described largely in those with musculoskeletal complaints including joint hypermobility, joint subluxations/dislocations, as well as skin and soft tissue manifestations. Many patients report activity-related pain and some go on to have daily pain. Two undifferentiated syndromes have been used to describe these manifestations-joint hypermobility syndrome and hEDS. Both are clinical diagnoses in the absence of other causation. Current medical literature further complicates differentiation and describes multiple associated symptoms and disorders. The current EDS nosology combines these two entities into the hypermobile type of EDS. Herein, we review and summarize the literature as a better clinical description of this type of connective tissue disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.