IMPORTANCE Minimal residual disease (MRD) refers to the presence of disease in cases deemed to be in complete remission by conventional pathologic analysis. Assessing the association of MRD status following induction therapy in patients with acute lymphoblastic leukemia (ALL) with relapse and mortality may improve the efficiency of clinical trials and accelerate drug development.OBJECTIVE To quantify the relationships between event-free survival (EFS) and overall survival (OS) with MRD status in pediatric and adult ALL using publications of clinical trials and other databases.DATA SOURCES Clinical studies in ALL identified via searches of PubMed, MEDLINE, and clinicaltrials.gov.STUDY SELECTION Our search and study screening process adhered to the PRISMA Guidelines. Studies that addressed EFS or OS by MRD status in patients with ALL were included; reviews, abstracts, and studies with fewer than 30 patients or insufficient MRD description were excluded. CONCLUSIONS AND RELEVANCE The value of having achieved MRD negativity is substantial in both pediatric and adult patients with ALL. These results are consistent across therapies, methods of and times of MRD assessment, cutoff levels, and disease subtypes. Minimal residual disease status warrants consideration as an early measure of disease response for evaluating new therapies, improving the efficiency of clinical trials, accelerating drug development, and for regulatory approval. A caveat is that an accelerated approval of a particular new drug using an intermediate end point, such as MRD, would require confirmation using traditional efficacy end points.
As part of a randomized, prospective clinical trial in large cell lymphoma, we conducted serial fluorodeoxyglucose positron emission tomography (FDG-PET) at baseline, after 2 cycles of chemotherapy (interim PET [i-PET]), and at end of treatment (EoT) to identify biomarkers of response that are predictive of remission and survival. Scans were interpreted in a core laboratory by 2 imaging experts, using the visual Deauville 5-point scale (5-PS), and by calculating percent change in FDG uptake (change in standardized uptake value [ΔSUV]). Visual scores of 1 through 3 and ΔSUV ≥66% were prospectively defined as negative. Of 524 patients enrolled in the parent trial, 169 agreed to enroll in the PET substudy and 158 were eligible for final analysis. In this selected population, all had FDG-avid disease at baseline; by 5-PS, 55 (35%) remained positive on i-PET and 28 (18%) on EoT PET. Median ΔSUV on i-PET was 86.2%. With a median follow-up of 5 years, ΔSUV, as continuous variable, was associated with progression-free survival (PFS) (hazard ratio [HR] = 0.99; 95% confidence interval [CI], 0.97-1.00; P = .02) and overall survival (OS) (HR, 0.98; 95% CI, 0.97-0.99; P = .03). ΔSUV ≥66% was predictive of OS (HR, 0.31; 95% CI, 0.11-0.85; P = .02) but not PFS (HR, 0.47; 95% CI, 0.19-1.13; P = .09). Visual 5-PS on i-PET did not predict outcome. ΔSUV, but not visual analysis, on i-PET predicted OS in DLBCL, although the low number of events limited the statistical analysis. These data may help guide future clinical trials using PET response-adapted therapy. This trial was registered at www.clinicaltrials.gov as #NCT00118209.
The pathogenesis of venous ulceration is thought to involve formation of pericapillary fibrin cuffs as a result of venous hypertension, and a recent hypothesis suggests that extravasated plasma proteins may bind or trap growth factors. We have compared the tissue distribution of fibrin cuffs, plasma proteins, procollagen, and transforming growth factors (TGF-beta 1 and TGF-beta 2) within venous ulcers and normally healing graft donor sites. In venous ulcers, the papillary dermis and the ulcer bed contained convoluted capillaries with phosphotungstic acid haematoxylin-positive pericapillary fibrin cuffs. By immunohistochemical staining, the cuffs were positive for actin, and contained massively redundant lamellae of basement membrane material which stained positive for type IV collagen. Extravasated factor XIIIa and alpha 2-macroglobulin were present within the fibrin cuffs. Increased numbers of type I procollagen positive fibroblasts, and increased TGF-beta 1 immunoreactivity were present within the fibrin cuffs, but not in the provisional matrix in the ulcer bed around the cuffs. In contrast, in normally healing graft donor sites, tortuous capillaries and fibrin cuffs were absent, factor XIIIa and alpha 1-macroglobulin were restricted to the lumina of vessels, and procollagen and TGF-beta immunoreactivity were present within the granulation tissue and adjacent dermal matrix at the wound margin. These observations suggest that growth factors critical in wound healing, such as TGF-beta, are present within venous ulcers, but are abnormally distributed. Their distribution within fibrin cuffs and co-localization with extravasated plasma proteins, particularly alpha 2-macroglobulin, which is a recognized scavenger molecule for TGF-beta and other growth factors, provides evidence for a possible 'trapping' of growth factors in venous ulcers.
Treatment of myeloma has benefited from the introduction of more effective and better tolerated agents, improvements in supportive care, better understanding of disease biology, revision of diagnostic criteria, and new sensitive and specific tools for disease prognostication and management. Assessment of minimal residual disease (MRD) in response to therapy is one of these tools, as longer progression-free survival (PFS) is seen consistently among patients who have achieved MRD negativity. Current therapies lead to unprecedented frequency and depth of response, and next-generation flow and sequencing methods to measure MRD in bone marrow are in use and being developed with sensitivities in the range of 10 to 10 cells. These technologies may be combined with functional imaging to detect MRD outside of bone marrow. Moreover, immune profiling methods are being developed to better understand the immune environment in myeloma and response to immunomodulatory agents while methods for molecular profiling of myeloma cells and circulating DNA in blood are also emerging. With the continued development and standardization of these methodologies, MRD has high potential for use in gaining new drug approvals in myeloma. The FDA has outlined two pathways by which MRD could be qualified as a surrogate endpoint for clinical studies directed at obtaining accelerated approval for new myeloma drugs. Most importantly, better understanding of MRD should also contribute to better treatment monitoring. Potentially, MRD status could be used as a prognostic factor for making treatment decisions and for informing timing of therapeutic interventions. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.