The essential RNA helicase, Mtr4, performs a critical role in RNA processing and degradation as an activator of the nuclear exosome. The molecular basis for this vital function is not understood and detailed analysis is significantly limited by the lack of structural data. In this study, we present the crystal structure of Mtr4. The structure reveals a new arch-like domain that is specific to Mtr4 and Ski2 (the cytosolic homologue of Mtr4). In vivo and in vitro analyses demonstrate that the Mtr4 arch domain is required for proper 5.8S rRNA processing, and suggest that the arch functions independently of canonical helicase activity. In addition, extensive conservation along the face of the putative RNA exit site highlights a potential interface with the exosome. These studies provide a molecular framework for understanding fundamental aspects of helicase function in exosome activation, and more broadly define the molecular architecture of Ski2-like helicases.
Considerable effort has focused on the development of selective protein farnesyl transferase (FTase) and protein geranylgeranyl transferase (GGTase) inhibitors as cancer chemotherapeutics. Here, we report a new strategy for anti-cancer therapeutic agents involving inhibition of farnesyl diphosphate synthase (FPPS) and geranylgeranyl diphosphate synthase (GGPPS), the two enzymes upstream of FTase and GGTase, by lipophilic bisphosphonates. Due to dual site targeting and decreased polarity, the compounds have activities far greater than do current bisphosphonate drugs in inhibiting tumor cell growth and invasiveness, both in vitro and in vivo. We explore how these compounds inhibit cell growth, how cell activity can be predicted based on enzyme inhibition data, and, using x-ray diffraction, solid state NMR and isothermal titration calorimetry, we show how these compounds bind to FPPS and/or GGPPS.
The Escherichia coli undecaprayl-pyrophosphate synthase (UPPs) structure has been solved using the single wavelength anomalous diffraction method. The putative substrate-binding site is located near the end of the A-strand with Asp-26 playing a critical catalytic role. In both subunits, an elongated hydrophobic tunnel is found, surrounded by four -strands (A-B-D-C) and two helices (␣2 and ␣3) and lined at the bottom with large residues Ile-62, Leu-137, Val-105, and His-103. The product distributions formed by the use of the I62A, V105A, and H103A mutants are similar to those observed for wild-type UPPs. Catalysis by the L137A UPPs, on the other hand, results in predominantly the formation of the C 70 polymer rather than the C 55 polymer. Ala-69 and Ala-143 are located near the top of the tunnel. In contrast to the A143V reaction, the C 30 intermediate is formed to a greater extent and is longer lived in the process catalyzed by the A69L mutant. These findings suggest that the small side chain of Ala-69 is required for rapid elongation to the C 55 product, whereas the large hydrophobic side chain of Leu-137 is required to limit the elongation to the C 55 product. The roles of residues located on a flexible loop were investigated. The S71A, N74A, or R77A mutants displayed 25-200-fold decrease in k cat values. W75A showed an 8-fold increase of the FPP K m value, and 22-33-fold increases in the IPP K m values were observed for E81A and S71A. The loop may function to bridge the interaction of IPP with FPP, needed to initiate the condensation reaction and serve as a hinge to control the substrate binding and product release. Prenyltransferases catalyze consecutive condensation reactions of isopentenyl pyrophosphate (IPP)1 with allylic pyrophosphate to generate linear isoprenyl polymers. The isoprenylates undergo further modification to form a variety of isoprenoid structures including steroids, terpenes, the side chains of respiratory quinones, carotenoids, natural rubber, the glycosyl carrier lipid, and prenyl proteins (1, 2). E-and Z-type prenyltransferases synthesize trans and cis double bonds, respectively, through the condensation reactions of IPP (3). Each of the E-type enzymes catalyzes the formation of a product having a specific chain length ranging from C 10 to C 50 (4).Two conserved DDXXD motifs are observed in E-type enzymes (5-7). X-ray structural (8) and site-directed mutagenesis studies (9 -12) of farnesyl-pyrophosphate synthase (FPPs) have shown that the first aspartate-rich motif binds the allylic substrate, whereas the second DDXXD binds IPP via Mg 2ϩ . Mutagenesis studies indicate that the 5th amino acid residue (Phe-77) upstream from the first DDXXD plays a critical role in controlling the chain length of the final product formed in the reaction catalyzed by E-type geranylgeranyl-pyrophosphate synthase from archaebacterium (13). By substituting this large residue with the smaller Ser, product synthesis was shifted from the production of C 20 product to C 25 and C 30 products (14). Double (F77...
The X-ray structure of an engineered purple CuA center in azurin from Pseudomonas aeruginosa has been determined and refined at 1.65 A resolution. Two independent purple CuA azurin molecules are in the asymmetric unit of a new P21 crystal, and they have nearly identical conformations (rmsd of 0.27 A for backbone atoms). The purple CuA azurin was produced by the loop-engineering strategy, and the resulting overall structure is unperturbed. The insertion of a slightly larger Cu-binding loop into azurin causes the two structural domains of azurin to move away from each other. The high-resolution structure reveals the detailed environment of the delocalized mixed-valence [Cu(1.5).Cu(1.5)] binuclear purple CuA center, which serves as a useful reference model for other native proteins, and provides a firm basis for understanding results from spectroscopic and functional studies of this class of copper center in biology. The two independent Cu-Cu distances of 2.42 and 2.35 A (with respective concomitant adjustments of ligand-Cu distances) are consistent with that (2.39 A) obtained from X-ray absorption spectroscopy with the same molecule, and are among the shortest Cu-Cu bonds observed to date in proteins or inorganic complexes. A comparison of the purple CuA azurin structure with those of other CuA centers reveals an important relationship between the angular position of the two His imidazole rings with respect to the Cu2S2(Cys) core plane and the distance between the Cu and the axial ligand. This relationship strongly suggests that the fine structural variation of different CuA centers can be correlated with the angular positions of the two histidine rings because, from these positions, one can predict the relative axial ligand interactions, which are responsible for modulating the Cu-Cu distance and the electron transfer properties of the CuA centers.
The human pathogen Pseudomonas aeruginosa produces pyocyanin, a blue-pigmented phenazine derivative, which is known to play a role in virulence. Pyocyanin is produced from chorismic acid via the phenazine pathway, nine proteins encoded by a gene cluster. Phenazine-1-carboxylic acid, the initial phenazine formed, is converted to pyocyanin in two steps that are catalyzed by the enzymes PhzM and PhzS. PhzM is an adenosylmethionine dependent methyltransferase, and PhzS is a flavin dependent hydroxylase. It has been shown that PhzM is only active in the physical presence of PhzS, suggesting that a protein-protein interaction is involved in pyocyanin formation. Such a complex would prevent the release of 5-methyl-phenazine-1-carboxylate, the putative intermediate, and an apparently unstable compound. Here, we describe the three-dimensional structure of PhzS, solved by single anomalous dispersion, at a resolution of 2.4 A. The structure reveals that PhzS is a member of the family of aromatic hydroxylases characterized by p-hydroxybenzoate hydroxylase. The flavin cofactor of PhzS is in the solvent exposed out orientation typically seen in unliganded aromatic hydroxylases. The PhzS flavin, however, appears to be held in a strained conformation by a combination of stacking interactions and hydrogen bonds. The structure suggests that access to the active site is gained via a tunnel on the opposite side of the protein from where the flavin is exposed. The C-terminal 23 residues are disordered as no electron density is present for these atoms. The probable location of the C-terminus, near the substrate access tunnel, suggests that it may be involved in substrate binding as has been shown for another structural homologue, RebC. This region also may be an element of a PhzM-PhzS interface. Aromatic hydroxylases have been shown to catalyze electrophilic substitution reactions on activated substrates. The putative PhzS substrate, however, is electron deficient and unlikely to act as a nucleophile, suggesting that PhzS may use a different mechanism than its structural relatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.