We have developed Mass++, a plug-in style visualization and analysis tool for mass spectrometry. Its plug-in style enables users to customize it and to develop original functions. Mass++ has several kinds of plug-ins, including rich viewers and analysis methods for proteomics and metabolomics. Plug-ins for supporting vendors' raw data are currently available; hence, Mass++ can read several data formats. Mass++ is both a desktop tool and a software development platform. Original functions can be developed without editing the Mass++ source code. Here, we present this tool's capability to rapidly analyze MS data and develop functions by providing examples of label-free quantitation and implementing plug-ins or scripts. Mass++ is freely available at http://www.first-ms3d.jp/english/ .
BackgroundLabel-free quantitation of mass spectrometric data is one of the simplest and least expensive methods for differential expression profiling of proteins and metabolites. The need for high accuracy and performance computational label-free quantitation methods is still high in the biomarker and drug discovery research field. However, recent most advanced types of LC-MS generate huge amounts of analytical data with high scan speed, high accuracy and resolution, which is often impossible to interpret manually. Moreover, there are still issues to be improved for recent label-free methods, such as how to reduce false positive/negatives of the candidate peaks, how to expand scalability and how to enhance and automate data processing. AB3D (A simple label-free quantitation algorithm for Biomarker Discovery in Diagnostics and Drug discovery using LC-MS) has addressed these issues and has the capability to perform label-free quantitation using MS1 for proteomics study.ResultsWe developed an algorithm called AB3D, a label free peak detection and quantitative algorithm using MS1 spectral data. To test our algorithm, practical applications of AB3D for LC-MS data sets were evaluated using 3 datasets. Comparisons were then carried out between widely used software tools such as MZmine 2, MSight, SuperHirn, OpenMS and our algorithm AB3D, using the same LC-MS datasets. All quantitative results were confirmed manually, and we found that AB3D could properly identify and quantify known peptides with fewer false positives and false negatives compared to four other existing software tools using either the standard peptide mixture or the real complex biological samples of Bartonella quintana (strain JK31). Moreover, AB3D showed the best reliability by comparing the variability between two technical replicates using a complex peptide mixture of HeLa and BSA samples. For performance, the AB3D algorithm is about 1.2 - 15 times faster than the four other existing software tools.ConclusionsAB3D is a simple and fast algorithm for label-free quantitation using MS1 mass spectrometry data for large scale LC-MS data analysis with higher true positive and reasonable false positive rates. Furthermore, AB3D demonstrated the best reproducibility and is about 1.2- 15 times faster than those of existing 4 software tools.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-014-0376-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.