Mitochondrial dysfunction can cause various neurological diseases. We therefore developed a quantitative framework to explore how mitochondrial dysfunction may influence the progression of Alzheimer's, Parkinson's, Huntington's and Lou Gehrig's diseases and cerebral palsy through analysis of genes showing altered expression in these conditions. We sought insights about the gene profiles of mitochondrial and associated neurological diseases by investigating gene-disease networks, KEGG pathways, gene ontologies and protein-protein interaction network. Gene disease networks were constructed to connect shared genes which are commonly found between the neurological diseases and Mitochondrial Dysfunction. We also generated KEGG pathways and gene ontologies to explore functional enrichment among them, and protein-protein interaction networks to identify the shared protein groups of these diseases. Finally, we verified our biomarkers using gold benchmark databases (e.g., OMIM and dbGaP) which identified effective reasons of it. Our network-based methodologies are useful to investigate disease mechanisms, predictions for comorbidities and identified distinct similarities among different neurological disorders for mitochondrial dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.