c Alpha-toxin is a major Staphylococcus aureus virulence factor. This study evaluated potential relationships between in vitro alpha-toxin expression of S. aureus bloodstream isolates, anti-alpha-toxin antibody in serum of patients with S. aureus bacteremia (SAB), and clinical outcomes in 100 hemodialysis and 100 postsurgical SAB patients. Isolates underwent spa typing and hla sequencing. Serum anti-alpha-toxin IgG and neutralizing antibody levels were measured by using an enzyme-linked immunosorbent assay and a red blood cell (RBC)-based hemolysis neutralization assay. Neutralization of alpha-toxin by an anti-alpha-toxin monoclonal antibody (MAb MEDI4893) was tested in an RBC-based lysis assay. Most isolates encoded hla (197/200; 98.5%) and expressed alpha-toxin (173/200; 86.5%). In vitro alpha-toxin levels were inversely associated with survival (cure, 2.19 g/ml, versus failure, 1.09 g/ml; P < 0.01). Both neutralizing (hemodialysis, 1.26 IU/ml, versus postsurgical, 0.95; P < 0.05) and IgG (hemodialysis, 1.94 IU/ml, versus postsurgical, 1.27; P < 0.05) antibody levels were higher in the hemodialysis population. Antibody levels were also significantly higher in patients infected with alpha-toxin-expressing S. aureus isolates (P < 0.05). Levels of both neutralizing antibodies and IgG were similar among patients who were cured and those not cured (failures). Sequence analysis of hla revealed 12 distinct hla genotypes, and all genotypic variants were susceptible to a neutralizing monoclonal antibody in clinical development (MEDI4893). These data demonstrate that alpha-toxin is highly conserved in clinical S. aureus isolates. Higher in vitro alpha-toxin levels were associated with a positive clinical outcome. Although patients infected with alpha-toxin-producing S. aureus exhibited higher anti-alpha-toxin antibody levels, these levels were not associated with a better clinical outcome in this study. Staphylococcus aureus is a leading cause of bacterial infections (1-4), including skin and soft tissue infections (5), pneumonia (6), bacteremia (7), endocarditis (8-10), and bone and joint infections (11). The risk of invasive S. aureus infections is significantly higher among certain subgroups, including hemodialysisdependent patients and postoperative patients (12-14).These high-risk subpopulations are potential candidates for novel forms of prevention or treatment against invasive S. aureus infections.Alpha-toxin, a -barrel pore-forming exotoxin encoded by hla (15, 16), is a key virulence factor produced by most S. aureus isolates (17, 18). It binds to ADAM10 (the A disintegrin and metalloproteinase domain-containing protein 10) on target cell membranes and then heptamerizes to generate a transmembrane pore, resulting in cell lysis (19). Hyperproduction of alpha-toxin is associated with enhanced virulence in strains of both epidemic (USA300 and USA500) and endemic (ST93) community-associated methicillin-resistant S. aureus (CA-MRSA) isolates (20,21). Studies with a number of animal models have also suggested that al...
i Staphylococcus aureus infections lead to an array of illnesses ranging from mild skin infections to serious diseases, such endocarditis, osteomyelitis, and pneumonia. Alpha-toxin (Hla) is a pore-forming toxin, encoded by the hla gene, that is thought to play a key role in S. aureus pathogenesis. A monoclonal antibody targeting Hla, MEDI4893, is in clinical development for the prevention of S. aureus ventilator-associated pneumonia (VAP). The presence of the hla gene and Hla protein in 994 respiratory isolates collected from patients in 34 countries in Asia, Europe, the United States, Latin America, the Middle East, Africa, and Australia was determined. Hla levels were correlated with the geographic location, age of the subject, and length of stay in the hospital. hla gene sequence analysis was performed, and mutations were mapped to the Hla crystal structure. S. aureus supernatants containing Hla variants were tested for susceptibility or resistance to MEDI4893. The hla gene was present and Hla was expressed in 99.0% and 83.2% of the isolates, respectively, regardless of geographic region, hospital locale, or age of the subject. More methicillin-susceptible than methicillin-resistant isolates expressed Hla (86.9% versus 78.8%; P ؍ 0.0007), and S. aureus isolates from pediatric patients expressed the largest amounts of Hla. Fifty-seven different Hla subtypes were identified, and 91% of the isolates encoded an Hla subtype that was neutralized by MED4893. This study demonstrates that Hla is conserved in diverse S. aureus isolates from around the world and is an attractive target for prophylactic monoclonal antibody (MAb) or vaccine development. Staphylococcus aureus causes serious infections that increase morbidity and mortality. Especially life-threatening conditions are hospital-associated pneumonia (HAP) and ventilatorassociated pneumonia (VAP), caused by S. aureus (1-4). Globally, approximately 10 million patients are admitted annually to intensive care units (ICUs) in major health care centers, and according to the Centers for Disease Control and Prevention, S. aureus accounts for more than 40% of VAP cases in the United States (5). ICU length of stay is extended an average of 17 days after the onset of S. aureus pneumonia, and attributable mortality can reach 30% despite the use of antibiotics (6).S. aureus secretes a number of virulence factors to evade the host immune response and contribute to pathogenesis. They include superantigens, leukocidins, complement evasion proteins, and the cytolytic toxin Hla (7-9). Hla is a 33-kDa pore-forming toxin encoded by the hla gene (10) that forms heptameric pores in host cell membranes, leading to lysis of the cell (11). Even at sublytic levels, Hla has been shown to affect innate immune effector cells, stimulate a hyperinflammatory response characteristic of bacterial pneumonia, and disrupt epithelial and endothelial barriers (12, 13). Hla expression is controlled by a complex regulatory network (14-16), and its expression has been reported to be upregulated durin...
Respiratory syncytial virus (RSV) is an important viral pathogen that causes severe lower respiratory tract infection in infantsRespiratory syncytial virus (RSV) is a major human pathogen that causes serious lower respiratory tract illness in infants and the elderly. Significant morbidity and mortality for RSV are especially common in certain high-risk pediatric populations such as premature infants and infants with congenital heart or lung disorders. RSV bronchiolitis in infants is associated with recurrent wheezing and asthma later in childhood (53, 76). There are currently no FDA-approved vaccines for prevention of RSV disease by active immunization. Immunoprophylaxis by passive transfer of a humanized murine RSV fusion (F) protein-specific antibody is licensed for much of the high-risk infant population but is not cost-effective in otherwise healthy infants, who represent the majority of those hospitalized with RSV. There is also a high rate of RSV reinfection during childhood, which suggests that a protective immune response to a vaccine may need to differ either quantitatively or qualitatively from that induced by natural infection.Previous attempts to develop RSV vaccines have faced significant obstacles. An experimental formalin-inactivated RSV vaccine in the 1960s induced exacerbated disease and death in some vaccinated children during subsequent natural infection. It was shown subsequently that the formalin-inactivated RSV vaccine induced serum antibodies with poor neutralizing activity in infants (50) and an atypical Th2-biased T-cell response associated with enhanced histopathology following experimental immunization in small animals (58, 68). Treatment of RSV antigens with formaldehyde modifies the protein with carbonyl groups, which preferentially induces Th2-type responses and leads to enhanced disease (47). Other attempts to generate RSV vaccines include using live-attenuated cold-adapted, temperature-sensitive mutant strains of RSV (10, 12-17, 22, 32, 39, 41, 42), protein subunit vaccines coupled with adjuvant (30,56,70,73), and RSV proteins expressed from recombinant viral vectors, including vaccinia virus (52, 75), adenovirus (31), vesicular stomatitis virus (37), Semliki Forest virus (8), bovine/ human parainfluenza virus type 3 (26), Sendai virus (64), and Newcastle disease virus (45). Although some of these vaccines showed promising preclinical data, no vaccine has been licensed for human use due to safety concerns and lack of efficacy data. RSV vaccines under development have not been
Human metapneumovirus (hMPV) is a recently discovered paramyxovirus that causes upper and lower respiratory tract infections in infants, the elderly, and immunocompromised individuals worldwide. Here, we developed Venezuelan equine encephalitis virus replicon particles (VRPs) encoding hMPV fusion (F) or attachment (G) glycoproteins and evaluated the immunogenicity and protective efficacy of these vaccine candidates in mice and cotton rats. VRPs encoding hMPV F protein, when administered intranasally, induced F-specific virus-neutralizing antibodies in serum and immunoglobulin A (IgA) antibodies in secretions at the respiratory mucosa. Challenge virus replication was reduced significantly in both the upper and lower respiratory tracts following intranasal hMPV challenge in these animals. However, vaccination with hMPV G protein VRPs did not induce neutralizing antibodies or protect animals from hMPV challenge. Close examination of the histopathology of the lungs of VRP-MPV F-vaccinated animals following hMPV challenge revealed no enhancement of inflammation or mucus production. Aberrant cytokine gene expression was not detected in these animals. Together, these results represent an important first step toward the use of VRPs encoding hMPV F proteins as a prophylactic vaccine for hMPV.
Live attenuated recombinant measles vaccine virus (MV) Edmonston-Zagreb (EZ) strain was evaluated as a viral vector to express the ectodomains of fusion protein of respiratory syncytial virus (RSV F) or glycoprotein 350 of Epstein-Barr virus (EBV gp350) as candidate vaccines for prophylaxis of RSV and EBV. The glycoprotein gene was inserted at the 1st or the 3rd position of the measles virus genome and the recombinant viruses were generated. Insertion of the foreign gene at the 3rd position had a minimal impact on viral replication in vitro. RSV F or EBV gp350 protein was secreted from infected cells. In cotton rats, EZ-RSV F and EZ-EBV gp350 induced MV- and insert-specific antibody responses. In addition, both vaccines also induced insert specific interferon gamma (IFN-γ) secreting T cell response. EZ-RSV F protected cotton rats from pulmonary replication of RSV A2 challenge infection. In rhesus macaques, although both EZ-RSV F and EZ-EBV gp350 induced MV specific neutralizing antibody responses, only RSV F specific antibody response was detected. Thus, the immunogenicity of the foreign antigens delivered by measles vaccine virus is dependent on the nature of the insert and the animal models used for vaccine evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.