The development of autoimmune diabetes in NOD mice results from selective destruction of beta-cells by a T-cell-dependent autoimmune process. However, the mechanisms that control the generation of beta-cell cytotoxic T-cells in vivo are poorly understood. We recently established 8.3-T-cell receptor (TCR)-beta transgenic NOD mice that show a selective acceleration of the recruitment of CD8+ T-cells into the islets of prediabetic animals, resulting in rapid beta-cell destruction and early onset of diabetes. This study was initiated to determine the role of macrophages in the development and activation of diabetogenic CD8+ T-cells in 8.3-TCR-beta transgenic NOD mice. Inactivation of macrophages in these transgenic mice resulted in the complete prevention of diabetes. When splenic T-cells from macrophage-depleted 8.3-TCR-beta transgenic NOD mice were transfused into severe combined immunodeficiency disease (NOD.scid) mice, none of the recipients developed diabetes up to 10 weeks after transfer, while most of the recipients of T-cells from age-matched control 8.3-TCR-beta transgenic NOD mice became diabetic. When intact NOD islets were transplanted under the renal capsule of macrophage-depleted 8.3-TCR-beta transgenic NOD mice, the majority of the grafted islets remained intact, while most of the islets grafted into age-matched, control 8.3-TCR-beta transgenic NOD mice were destroyed within 3 weeks after transplantation. The depletion of macrophages in these mice resulted in a decrease in the Th1 immune response along with an increase in the Th2 immune response because of significant decreases in the expression of macrophage-derived cytokines, particularly interleukin-12, and a decrease in beta-cell-specific T-cell activation, as shown by significant decreases in the expression of Fas ligand (FasL), CD40 ligand (CD40L), and perforin, as compared with control mice. We conclude that macrophages are absolutely required for the development and activation of beta-cell cytotoxic CD8+ T-cells in 8.3-TCR-beta transgenic NOD mice.
IL-12 is a secretory heterodimeric cytokine composed of p35 and p40 subunits. IL-12 p35 and p40 subunits are sometimes produced as monomers or homodimers. IL-12 is also produced as a membrane-bound form in some cases. In this study, we hypothesized that the membrane-bound form of IL-12 subunits may function as a costimulatory signal for selective activation of TAA-specific CTL through direct priming without involving antigen presenting cells and helper T cells. MethA fibrosarcoma cells were transfected with expression vectors of membrane-bound form of IL-12p35 (mbIL-12p35) or IL-12p40 subunit (mbIL-12p40) and were selected under G418-containing medium. The tumor cell clones were analyzed for the expression of mbIL-12p35 or p40 subunit and for their stimulatory effects on macrophages. The responsible T-cell subpopulation for antitumor activity of mbIL-12p35 expressing tumor clone was also analyzed in T cell subset-depleted mice. Expression of transfected membrane-bound form of IL-12 subunits was stable during more than 3 months of in vitro culture, and the chimeric molecules were not released into culture supernatants. Neither the mbIL-12p35-expressing tumor clones nor mbIL-12p40-expressing tumor clones activated macrophages to secrete TNF-α. Growth of mbIL-12p35-expressing tumor clones was more accelerated in the CD8+ T cell-depleted mice than in CD4+ T cell-depleted or normal mice. These results suggest that CD8+ T cells could be responsible for the rejection of mbIL-12p35-expressing tumor clone, which may bypass activation of antigen presenting cells and CD4+ helper T cells.
BackgroundHuman Epidermal Growth Factor Receptor 2 (HER2), is a receptor tyrosine kinase that is highly expressed on the surface of many solid tumors. While many patients derive meaningful benefit from the approved HER2-directed therapies, most will eventually suffer relapse or progression of their disease highlighting the need for additional treatment options. Currently there are no FDA-approved cellular therapies targeting HER2. Over the past decade, however, cellular therapy has been shown to be a viable treatment option in different cancer types. Here we present AB-201, an off-the-shelf, cryopreserved cord blood (CB)-derived HER2 chimeric antigen receptor (CAR)-natural killer (NK) cell therapy as a safe, active, and readily available option for patients with HER2+ solid tumors.MethodsAB-201 is comprised of ex vivo expanded allogeneic CB-derived NK cells that have been genetically modified to express a HER2-directed CAR and presented as a cryopreserved infusion-ready product. The manufacturing process utilizes a feeder-cell line engineered to express factors specifically identified as supportive to NK cell expansion and a lentiviral transduction step to introduce the HER2 CAR construct. In vitro characterization of AB-201 included evaluation of the purity and expression of cell surface markers by flow cytometry and short- (4 hour) and long-term (over 5 days) cytotoxicity assays in the presence of HER2+ tumor cell lines at various effector to target ratios. In addition, AB-201 efficacy was assessed in vivo in established ovarian (intraperitoneal, SKOV-3), breast (intraperitoneal, HCC1954) and gastric (subcutaneous, N87) xenograft models in NSG mice.ResultsHER2 CAR expression was detected in 93.1% of AB-201 cells. AB-201 is 97.9% CD3-/CD56+ cells and 94.6% CD56+/CD16+. Further characterization of AB-201 demonstrated high expression of NK activating receptors such as NKG2D, NKp30, NKp46, and DNAM-1 and expression of the chemokine receptor, CXCR3. AB-201 demonstrated concentration-dependent and HER2 targeted short-term cytotoxic activity and sustained long-term cell killing against the tumor cell lines SKOV-3, HCC1954, and NCI-N87. Efficacy, as evidenced by a significant reduction in bioluminescent signal or tumor volume, was observed in all xenograft models. A significant survival benefit over non-transduced NK cells or trastuzumab controls was demonstrated in the HCC1954 model.ConclusionsData presented herein suggests that AB-201, a highly pure and readily expandable HER2-directed CAR NK cell product, has potential to be an effective therapy in the treatment of HER2+ tumors.Ethics ApprovalThe animal studies were conducted in accordance with an Institutional Animal Care and Use Committee-approved protocol and with the approval of an IACUC committee at each center where the studies took place
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.