As mobile devices with positioning capabilities continue to proliferate, data management for so-called trajectory databases that capture the historical movements of populations of moving objects becomes important. This paper considers the querying of such databases for convoys, a convoy being a group of objects that have traveled together for some time.More specifically, this paper formalizes the concept of a convoy query using density-based notions, in order to capture groups of arbitrary extents and shapes. Convoy discovery is relevant for reallife applications in throughput planning of trucks and carpooling of vehicles. Although there has been extensive research on trajectories in the literature, none of this can be applied to retrieve correctly exact convoy result sets. Motivated by this, we develop three efficient algorithms for convoy discovery that adopt the wellknown filter-refinement framework. In the filter step, we apply linesimplification techniques on the trajectories and establish distance bounds between the simplified trajectories. This permits efficient convoy discovery over the simplified trajectories without missing any actual convoys. In the refinement step, the candidate convoys are further processed to obtain the actual convoys. Our comprehensive empirical study offers insight into the properties of the paper's proposals and demonstrates that the proposals are effective and efficient on real-world trajectory data.
Abstract-Existing prediction methods in moving objects databases cannot forecast locations accurately if the query time is far away from the current time. Even for near future prediction, most techniques assume the trajectory of an object's movements can be represented by some mathematical formulas of motion functions based on its recent movements. However, an object's movements are more complicated than what the mathematical formulas can represent. Prediction based on an object's trajectory patterns is a powerful way and has been investigated by several work. But their main interest is how to discover the patterns. In this paper, we present a novel prediction approach, namely The Hybrid Prediction Model, which estimates an object's future locations based on its pattern information as well as existing motion functions using the object's recent movements. Specifically, an object's trajectory patterns which have ad-hoc forms for prediction are discovered and then indexed by a novel access method for efficient query processing. In addition, two query processing techniques that can provide accurate results for both near and distant time predictive queries are presented. Our extensive experiments demonstrate that proposed techniques are more accurate and efficient than existing forecasting schemes.
Sensor networks are increasingly being deployed in the environment for many different purposes. The observations that they produce are made available with heterogeneous schemas, vocabularies and data formats, making it difficult to share and reuse this data, for other purposes than those for which they were originally set up. The authors propose an ontology-based approach for providing data access and query capabilities to streaming data sources, allowing users to express their needs at a conceptual level, independent of implementation and language-specific details. In this article, the authors describe the theoretical foundations and technologies that enable exposing semantically enriched sensor metadata, and querying sensor observations through SPARQL extensions, using query rewriting and data translation techniques according to mapping languages, and managing both pull and push delivery modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.