We identify compositionally complex alloys (CCAs) that offer exceptional mechanical properties for elevated temperature applications by employing machine learning (ML) in conjunction with rapid synthesis and testing of alloys for validation to accelerate alloy design. The advantages of this approach are scalability, rapidity, and reasonably accurate predictions. ML tools were implemented to predict Young’s modulus of refractory-based CCAs by employing different ML models. Our results, in conjunction with experimental validation, suggest that average valence electron concentration, the difference in atomic radius, a geometrical parameter λ and melting temperature of the alloys are the key features that determine the Young’s modulus of CCAs and refractory-based CCAs. The Gradient Boosting model provided the best predictive capabilities (mean absolute error of 6.15 GPa) among the models studied. Our approach integrates high-quality validation data from experiments, literature data for training machine-learning models, and feature selection based on physical insights. It opens a new avenue to optimize the desired materials property for different engineering applications.
More than $270 billion is spent on combatting corrosion annually in the USA alone. As such, we present a machine-learning (ML) approach to down select corrosion-resistant alloys. Our focus is on a non-traditional class of alloys called multi-principal element alloys (MPEAs). Given the vast search space due to the variety of compositions and descriptors to be considered, and based upon existing corrosion data for MPEAs, we demonstrate descriptor optimization to predict corrosion resistance of any given MPEA. Our ML model with descriptor optimization predicts the corrosion resistance of a given MPEA in the presence of an aqueous environment by down selecting two environmental descriptors (pH of the medium and halide concentration), one chemical composition descriptor (atomic % of element with minimum reduction potential), and two atomic descriptors (difference in lattice constant ($$\Delta {{{\mathrm{a}}}}$$ Δ a ) and average reduction potential). Our findings show that, while it is possible to down select corrosion-resistant MPEAs by using ML from a large search space, a larger dataset and higher quality data are needed to accurately predict the corrosion rate of MPEAs. This study shows both the promise and the perils of ML when applied to a complex chemical phenomenon like corrosion of alloys.
We consider estimation of a density when observed lifetime from the convolution model is contaminated by additive measurement errors. A kernel type deconvolving density estimator of the unknown distribution is proposed using Inverse-Probabilityof-Censoring Weighted Average. Further, we discuss the asymptotic normality of the deconvolution kernel density estimator when the error distribution is either ordinary smooth or supersmooth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.