In quantum communication systems, the precise estimation of the detector´s response to the incoming light is necessary to avoid security breaches. The typical working regime uses a free-running single-photon avalanche diode in combination with attenuated laser pulses at telecom wavelength for encoding information. We demonstrate the validity of an analytical model for this regime that considers the effects of dark counts and dead time on the measured count rate. For the purpose of gaining a better understanding of these effects, the photon detections were separated from the dark counts via a software-induced gating mechanism. The model was verified by experimental data for mean photon numbers covering three orders of magnitude as well as for laser repetition frequencies below and above the inverse dead time. Consequently, our model would be of interest for predicting the detector response not only in the field of quantum communications, but also in any other quantum physics experiment where high detection rates are needed.
We report on the characterization of the angular-dependent emission of single-photon emitters based on single nitrogen-vacancy (NV-) centers in nanodiamond at room temperature. A theoretical model for the calculation of the angular emission patterns of such an NV-center at a dielectric interface will be presented. For the first time, the orientation of the NV-centers in nanodiamond was determined from back focal plane images of NV-centers and by comparison of the theoretical and experimental angular emission pattern. Furthermore, the orientation of the NV-centers was also obtained from measurements of the fluorescence intensity in dependence on the polarization angle of the linearly polarized excitation laser. The results of these measurements are in good agreement. Moreover, the collection efficiency in this setup was calculated to be higher than 80% using the model of the angular emission of the NV-centers.
We apply an InGaAs quantum dot based single-photon source for the absolute detection efficiency calibration of a silicon single-photon avalanche diode operating in Geiger mode. The single-photon source delivers up to (2.55 ± 0.02) × 106 photons per second inside a multimode fiber at the wavelength of 929.8 nm for above-band pulsed excitation with a repetition rate of 80 MHz. The purity of the single-photon emission, expressed by the value of the 2nd order correlation function g(2)(τ = 0), is between 0.14 and 0.24 depending on the excitation power applied to the quantum dot. The single-photon flux is sufficient to be measured with an analog low-noise reference detector, which is traceable to the national standard for optical radiant flux. The measured detection efficiency using the single-photon source remains constant within the measurement uncertainty for different photon fluxes. The corresponding weighted mean thus amounts to 0.3263 with a standard uncertainty of 0.0022.
Single-photon sources have a variety of applications. One of these is quantum radiometry, which is reported on in this paper in the form of an overview, specifically of the current state of the art in the application of deterministic single photon sources to the calibration of single photon detectors. To optimize single-photon sources for this purpose, extensive research is currently carried out at the European National Metrology Institutes (NMIs), in collaboration with partners from universities. Single-photon sources of different types are currently under investigation, including sources based on defect centres in (nano-)diamonds, on molecules and on semiconductor quantum dots. We will present, summarise, and compare the current results obtained at European NMIs for single-photon sources in terms of photon flux, single-photon purity, and spectral power distribution as well as the results of single-photon detector calibrations carried out with this type of light sources.
The traceability of measurements of the parameters characterizing single-photon sources, such as photon flux and optical power, paves the way towards their reliable comparison and quantitative evaluation. In this paper, we present an absolute measurement of the optical power of a single-photon source based on an InGaAs quantum dot under pulsed excitation with a calibrated single-photon avalanche diode (SPAD) detector. For this purpose, a single excitonic line of the quantum dot emission with a bandwidth below 0.1 nm was spectrally filtered by using two tilted interference filters. Since high count rates are essential for many metrological applications, we optimized the setup efficiency by combining high overall transmission of the optical components with a geometrical enhancement of the extraction efficiency of a single quantum dot by a monolithic microlens to reach photon fluxes up to 3.7 ⋅ 10 5 photons per second at the SPADs. A relative calibration of two SPAD detectors with a relative standard uncertainty of 0.7% was carried out and verified by the standard calibration method using an attenuated laser. Finally, an Allan deviation analysis was performed giving an optimal averaging time of 92 s for the photon flux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.