Velocity measurements from satellite-tracked surface drifters collected between 1994 and 2010 are used to map the surface circulation in the Solomon Sea, the last passageway for waters of subtropical origin flowing northward toward the equator, where they replenish the Pacific warm pool. Pseudo-Eulerian statistics of the drifter observations show a strong seasonal cycle in both the mean circulation and the eddy kinetic energy in the region. The circulation is characterized by a strong northward flow from June to November (the season of strong southeasterly trade winds over the Solomon Sea) and a mostly southward flow with increased variability from December to May (when the winds over the sea are weak). The seasonal velocity signal has the largest magnitude narrowly along the double western boundary formed by the eastern coastlines of New Guinea and the Solomon Islands, suggesting that direct wind driving with its much larger spatial scales is not the main influence. In addition, the surface circulation exhibits substantial interannual variability of magnitude comparable to that of the seasonal cycle with velocity and temperature anomalies consistent with changes in the western boundary current acting to compensate for the discharge and recharge of the Pacific warm pool during ENSO.
A linear stability analysis of a meridional boundary current on the beta plane is presented. The boundary current is idealized as a constant-speed meridional jet adjacent to a semi-infinite motionless far field. The far-field region can be situated either on the eastern or the western side of the jet, representing a western or an eastern boundary current, respectively. It is found that when unstable, the meridional boundary current generates temporally growing propagating waves that transport energy away from the locally unstable region toward the neutral far field. This is the so-called radiating instability and is found in both barotropic and two-layer baroclinic configurations. A second but important conclusion concerns the differences in the stability properties of eastern and western boundary currents. An eastern boundary current supports a greater number of radiating modes over a wider range of meridional wavenumbers. It generates waves with amplitude envelopes that decay slowly with distance from the current. The radiating waves tend to have an asymmetrical horizontal structure-they are much longer in the zonal direction than in the meridional, a consequence of which is that unstable eastern boundary currents, unlike western boundary currents, have the potential to act as a source of zonal jets for the interior of the ocean.
Transient growth due to non-normality is investigated for the Taylor-Couette problem with counter-rotating cylinders as a function of aspect ratio η and Reynolds number Re. For all Re ≤ 500, transient growth is enhanced by curvature, i.e. is greater for η < 1 than for η = 1, the plane Couette limit. For fixed Re < 130 it is found that the greatest transient growth is achieved for η between the Taylor-Couette linear stability boundary, if it exists, and one, while for Re > 130 the greatest transient growth is achieved for η on the linear stability boundary.Transient growth is shown to be approximately 20% higher near the linear stability boundary at Re = 310, η = 0.986 than at Re = 310, η = 1, near the threshold observed for transition in plane Couette flow. The energy in the optimal inputs is primarily meridional; that in the optimal outputs is primarily azimuthal. Pseudospectra are calculated for two contrasting cases.For large curvature, η = 0.5, the pseudospectra adhere more closely to the spectrum than in a narrow gap case, η = 0.99.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.