Autism spectrum disorder is an entity that reflects a scientific consensus that several previously separated disorders are actually a single spectrum disorder with different levels of symptom severity in two core domains - deficits in social communication and interaction, and restricted repetitive behaviors. Autism spectrum disorder is diagnosed in all racial, ethnic and socioeconomic groups and because of its increased prevalence, reported worldwide through the last years, made it one of the most discussed child psychiatric disorders. In term of aetiology as several other complex diseases, Autism spectrum disorder is considered to have a strong genetic component.
The term "pharmacogenetics" is used to describe the study of variability in drug response due to heredity. It is associated with "genedrug interactions". Later on, the term "pharmacogenomics" has been introduced and it comprises all genes in the genome that can define drug response. The application of pharmacogenetics in oncology is of a great significance because of the narrow therapeutic index of chemotherapeutic drugs and the risk for life-threatening adverse effects. Many cancer genomics studies have been focused on the acquired, somatic mutations; however, increasing evidence shows that inherited germline genetic variations play a key role in cancer risk and treatment outcome. The aim of this review is to summarize the state of pharmacogenomics in oncology, focusing only on germline mutations. Genetic polymorphisms can be found in the genes that code for the metabolic enzymes and cellular targets for most of the chemotherapy drugs. Nevertheless, predicting treatment outcome is still not possible for the majority of regimens. In this review, we discuss the most comprehensively studied drug-gene pairspresent knowledge and current limitations. However, further studies in larger groups of cancer patients are necessary to be conducted with precise validation of pharmacogenetic biomarkers before these markers could be routinely applied in clinical diagnosis and treatment.
Neuropsychiatric diseases, such as schizophrenia, bipolar disorder (BD), major depressive disorder (MDD) and autism spectrum disorder (ASD), are a huge burden on society, impairing the health of those affected, as well as their ability to learn and work. Biomarkers that reflect the dysregulations linked to neuropsychiatric diseases may potentially assist the diagnosis of these disorders. Most of these biomarkers are found in the brain tissue, which is not easily accessible. This is the challenge for the search of novel biomarkers that are present in various body fluids, including serum or plasma. As a group of important endogenous small noncoding RNAs that regulate gene expression at post-transcriptional level, microRNAs (miRNAs) play a crucial role in many physiological and pathological processes. Previously, researchers discovered that miRNAs contribute to the neurodevelopment and maturation, including neurite outgrowth, dendritogenesis and dendritic spine formation. These developments underline the significance of miRNAs as potential biomarkers for diagnosing and prognosing central nervous system diseases. Accumulated evidence indicates that there are considerable differences between the cell-free miRNA expression profiles of healthy subjects and those of patients. Therefore, circulating miRNAs are likely to become a new class of noninvasive, sensitive biomarkers. Despite the fact that little is known about the origin and functions of circulating miRNAs, their essential roles in the clinical diagnosis and prognosis of neuropsychiatric diseases make them attractive biomarkers. In this review we cover the increasing amounts of dataset that have accumulated in the last years on the use of circulating miRNAs and their values as potential biomarkers in most areas of neuropsychiatric diseases.
Liquid biopsy (LB) is a minimally invasive method which aims to detect circulating tumor-derived components in body fluids. It provides an alternative to current cancer screening methods that use tissue biopsies for the confirmation of diagnosis. This paper attempts to determine how far the regulatory, policy, and governance framework provide support to LB implementation into healthcare systems and how the situation can be improved. For that reason, the European Alliance for Personalised Medicine (EAPM) organized series of expert panels including different key stakeholders to identify different steps, challenges, and opportunities that need to be taken to effectively implement LB technology at the country level across Europe. To accomplish a change of patient care with an LB approach, it is required to establish collaboration between multiple stakeholders, including payers, policymakers, the medical and scientific community, and patient organizations, both at the national and international level. Regulators, pharma companies, and payers could have a major impact in their own domain. Linking national efforts to EU efforts and vice versa could help in implementation of LB across Europe, while patients, scientists, physicians, and kit manufacturers can generate a pull by undertaking more research into biomarkers.
Schizophrenia (SZ) is a chronic neuropsychiatric disorder characterized by affective, neuromorphological and cognitive impairment, deteriorated social functioning and psychosis with underlying molecular abnormalities, including gene expression changes. Observations have suggested that fasciculation and elongation protein ζ-1 (FEZ1) may be implicated in the pathogenesis of schizophrenia. Nevertheless, our current knowledge of the expression of FEZ1 in peripheral blood of schizophrenia patients remains unclear. The purpose of this study was to identify the characteristic gene expression patterns of FEZ1 in peripheral blood samples from schizophrenia patients. We performed quantitative reverse-transcriptase (qRT-PCR) analysis using peripheral blood from drug-free schizophrenia patients (n = 29) and age and gender-matched general population controls (n = 24). For the identification of FEZ1 gene expression patterns, we applied a comparative threshold cycle (CT) method. A statistically significant difference of FEZ1 mRNA level was revealed in schizophrenia subjects compared to healthy controls (p = 0.0034). To the best of our knowledge, this study is the first describing a down-regulation of FEZ1 gene expression in peripheral blood of patients with schizophrenia. Our results suggested a possible functional role of FEZ1 in the pathogenesis of schizophrenia and confirmed the utility of peripheral blood samples for molecular profiling of psychiatric disorders including schizophrenia. The current study describes FEZ1 gene expression changes in peripheral blood of patients with schizophrenia with significantly down-regulation of FEZ1 mRNA. Thus, our results provide support for a model of SZ pathogenesis that includes the effects of FEZ1 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.