All metal objects support fluctuating currents that are responsible for evanescent-wave Johnson noise in their vicinity due both to thermal and quantum effects. The noise fields can decohere qubits in their neighborhood. It is quantified by the average value of B(x, t) B(x , t ) and its time Fourier transform. We develop the formalism particularly for objects whose dimensions are small compared with the skin depth, which is the appropriate regime for nanoscale devices. This leads to a general and surprisingly simple formula for the noise correlation function of an object of arbitrary shape. This formula has a clear physical interpretation in terms of induced currents in the object. It can also be the basis for straightforward numerical evaluation. For a sphere, a solution is given in closed form in terms of a generalized multipole expansion. Plots of the solution illustrate the physical principles involved. We give examples of how the spatial pattern of noise can affect quantum information processing in nearby qubits. The theory implies that if the qubit system is miniaturized to a scale D, then decoherence rates of qubits scale as 1/D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.