Novel nanostructured materials possessing new architectural segments can be synthesized using various combinations of graphene and carbon nanotubes (CNT) that can result in the generation of enhanced physico-chemical properties within the hybrids. Comprehending the various physical processes involved in the creation of these new segments is crucial for designing an optimized nanomaterial for a specific purpose. In this paper we report induced folding in a graphene sheet resulting from the physical interactions between water-mediated graphene and a CNT. Owing to robust binding interactions between the CNT and a compatible graphene sheet, the latter forms a second domed layer around the former culminating in a structure equivalent to a double-walled CNT. The induced curvature change in graphene by CNT was found to have a strong dependence upon their relative physical dimensions. For example, CNT possessing extremely small diameters are unable to induce any significant curvature changes in longer graphene sheets. The potential-of-mean force (PMF) between our reference graphene and CNT in water suggests a favorable binding interaction of -14.5 kcal mol-1. The breakdown of the PMF into direct graphene-nanotube interactions and water-mediated interactions reveals a huge reduction in the strongly attractive binding interactions between graphene and CNT by the water molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.