Medical staff in interventional procedures are among the professionals with the highest occupational doses. Active personal dosemeters (APDs) can help in optimizing the exposure during interventional procedures. However, there can be problems when using APDs during interventional procedures, due to the specific energy and angular distribution of the radiation field and because of the pulsed nature of the radiation. Many parameters like the type of interventional procedure, personal habits and working techniques, protection tools used and X-ray field characteristics influence the occupational exposure and the scattered radiation around the patient. In this paper, we compare the results from three types of APDs with a passive personal dosimetry system while being used in real clinical environment by the interventional staff. The results show that there is a large spread in the ratios of the passive and active devices.
The purpose of this study was to measure out-of-field organ doses in two anthropomorphic child phantoms for the treatment of large brain arteriovenous malformations (AVMs) using hypofractionated gamma knife (GK) radiosurgery and to compare these with an alternative treatment using intensity-modulated radiation therapy (IMRT). Target volume was identical in size and shape in all cases. Radiophotoluminescent (RPL), thermoluminescent (TL) and optically stimulated luminescent (OSL) dosimeters were used for out-of-field dosimetry during GK treatment and a good agreement within 1-2% between results was shown. In addition, the use of multiple dosimetry systems strengthens the reliability of the findings. The number of GK isocentres was confirmed to be important for the magnitude of out-of-field doses. Measured GK doses for the same distance from the target, when expressed per target dose and isocentre, were comparable in both phantoms. GK out-of-field doses averaged for both phantoms were evaluated to be 120 mGy/Gy for eyes then sharply reduced to 20 mGy/Gy for mandible and slowly reduced up to 0.8 mGy/Gy for testes. Taking into account the fractionation regimen used to treat AVM patients, the total treatment organ doses to the out-of-field organs were calculated and compared with IMRT. The eyes were better spared with GK whilst for more distant organs doses were up to a factor of 2.8 and 4 times larger for GK compared to IMRT in 5-year and 10-year old phantoms, respectively. Presented out-of-field dose values are specific for the investigated AVM case, phantoms and treatment plans used for GK and IMRT, but provide useful information about out-of-field dose levels and emphasise their importance.
Background Patients can be exposed to high skin doses during complex interventional cardiology (IC) procedures. Purpose To identify which clinical and technical parameters affect patient exposure and peak skin dose (PSD) and to establish dose reference levels (DRL) per clinical complexity level in IC procedures. Material and Methods Validation and Estimation of Radiation skin Dose in Interventional Cardiology (VERIDIC) project analyzed prospectively collected patient data from eight European countries and 12 hospitals where percutaneous coronary intervention (PCI), chronic total occlusion PCI (CTO), and transcatheter aortic valve implantation (TAVI) procedures were performed. A total of 62 clinical complexity parameters and 31 technical parameters were collected, univariate regressions were performed to identify those parameters affecting patient exposure and define DRL accordingly. Results Patient exposure as well as clinical and technical parameters were collected for a total of 534 PCI, 219 CTO, and 209 TAVI. For PCI procedures, body mass index (BMI), number of stents ≥2, and total stent length >28 mm were the most prominent clinical parameters, which increased the PSD value. For CTO, these were total stent length >57 mm, BMI, and previous anterograde or retrograde technique that failed in the same session. For TAVI, these were male sex, BMI, and number of diseased vessels. DRL values for Kerma-area product ( PKA), air kerma at patient entrance reference point ( Ka,r), fluoroscopy time (FT), and PSD were stratified, respectively, for 14 clinical parameters in PCI, 10 in CTO, and four in TAVI. Conclusion Prior knowledge of the key factors influencing the PSD will help optimize patient radiation protection in IC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.