This study investigates the distribution of highly-directional far-field emission on GaN-based ultrathin microcavity light-emitting diodes (uMCLEDs) with photonic crystals (PhCs). The ultrathin 550 nm cavity, PhC lattice constant of 370 nm, and hole depth of 250 nm in the GaN PhC uMCLED provide near single guided mode extraction and a pattern of high directionality radiation. Angular-spectral-resolved electroluminescence measurements reveal photon-band structure agreement with the fundamental mode effective refractive index dispersion curve. In addition, GaN PhC uMCLED increase the output power extraction efficiency by 145.9% (∼2.46×) compared with GaN non-PhC uMCLED, and a directional far-field emission pattern at half intensity of nearly ±15°.
In this study, a GaN-based alternating current light-emitting diode (AC-LED) with 34 numbers of microchips illuminated in each bias direction was fabricated. After calibrating the integration duration, the light output powers of the AC-LED driven by AC and DC were 388.1 and 312.8 mW when the input power was about 1 W, respectively. The flickering illumination mode of the AC-LED driven by AC decreased the heat accumulation and revealed a higher energy utilization efficiency than that of the AC-LED driven by DC. The larger blue shift and smaller full width at half maximum of the AC-LED driven by AC than those of the AC-LED driven by DC were also observed.
Far-field distributions of GaN-based photonic crystal (PhC) film-transferred light-emitting diodes (FT-LEDs) were investigated. The thickness of the device is about 840 nm. The emission wavelength is around 520 nm. The PhC region is a square lattice with a/lambda around 0.5. Angular-resolved measurements in the Gamma-X and Gamma-M directions were made in the polarized-resolved manner. Guided mode extraction behavior in agreement with the two-dimensional free-photon band calculation was observed. In addition, the pseudo-TM behavior for the non-collinearly coupled modes was observed. The azimuthal-mapping of the angular-resolved spectra revealed the evolution of the collinearly and the non-collinearly coupled modes. Furthermore, the light enhancement of approximately 2.7x and the collimation angle about 102.3 degrees were achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.