Stress-induced phosphoprotein 1 (STIP1), a cochaperone that organizes other chaperones, heat shock proteins (HSPs), was recently shown to be secreted by human ovarian cancer cells. In neuronal tissues, binding to prion protein was required for STIP1 to activate the ERK (extracellular-regulated MAP kinase) signaling pathways. However, we report that STIP1 binding to a bone morphogenetic protein (BMP) receptor, ALK2 (activin A receptor, type II-like kinase 2), was necessary and sufficient to stimulate proliferation of ovarian cancer cells. The binding of STIP1 to ALK2 activated the SMAD signaling pathway, leading to transcriptional activation of ID3 (inhibitor of DNA binding 3), promoting cell proliferation. In conclusion, ovarian-cancer-tissue-secreted STIP1 stimulates cancer cell proliferation by binding to ALK2 and activating the SMAD-ID3 signaling pathways. Although animal studies are needed to confirm these mechanisms in vivo, our results may pave the way for developing novel therapeutic strategies for ovarian cancer.
Stress-induced phosphoprotein 1 (STIP1) has been recently identified as a released biomarker in human ovarian cancer. In addition, STIP1 secreted by human ovarian cancer cells has been shown to promote tumor cell proliferation by binding to ALK2 (activin A receptor, type II-like kinase 2) and activating the SMAD-ID3 signaling pathways. In this study, a total of 330 ovarian cancer tumor samples were evaluated for STIP1 expression by immunohistochemistry and analyzed for a possible correlation with patient characteristics and survival. The quantification of immunoreactivity was accomplished by applying an immunohistochemical scoring system (histoscore). Patients with high-level STIP1 expression (histoscore ≥169) had a significantly worse survival (high STIP1, mean survival time = 76 months; low STIP1, mean survival time = 112 months; P<0.0001). Moreover, STIP1 histoscores were significantly higher in high-grade tumors (grade 3) than in low-grade (grade 1–2) malignancies (P<0.0001), suggesting that STIP1 may be a proxy for tumor aggressiveness. The results of multivariable analysis revealed that high STIP1 histoscores, advanced stages, histologic types, and the presence of residual disease (≥2 cm) were independent predictors of poor prognosis. The addition of STIP1 histoscores improved the prediction of overall and progression-free survival rates in the multivariable Cox proportional hazard model. The treatment of ovarian cancer cells with recombinant STIP1 stimulated cell proliferation and migration, but co-treatment with anti-STIP1 antibodies abrogated this effect. Our findings suggest that STIP1 expression may be related to prognosis and that the STIP1 pathway may represent a novel therapeutic target for human ovarian cancer.
Decreasing skin pigmentation is desirable for various medical or cosmetic conditions. Although numerous pharmaceutical agents are currently available, their depigmentation effects are still not satisfactory. In this study, we investigated the effects of chitosan, a natural marine product, on melanin synthesis and melanosome transfer. Treating B16F10 melanoma cells caused the inhibitory effect of chitosan on melanogenesis to be more prominent under α‐melanocyte‐stimulating hormone (α‐MSH) stimulation. Chitosan samples of different molecular weights inhibited melanogenesis to a comparable extent, whereas increasing the deacetylation of chitosan enhanced its depigmentation effects. Chitosan was found to effectively reduce basal or α‐MSH‐stimulated melanogenesis by suppressing the expression of melanogenic‐related proteins (microphthalmia transcription factor, tyrosinase, and tyrosinase‐related protein‐1 and protein‐2) as well as inhibiting tyrosinase activity. Moreover, the inhibitory effect of chitosan on melanogenesis in human melanocytes was confirmed. A transwell coculture system using permeable inserts was designed to allow the contact of human melanocytes and human HaCaT keratinocytes through the tiny holes on the membrane. When chitosan was added to this melanocyte–keratinocyte coculture system, we observed decreased melanosome release from melanocytes. Reduced melanosome uptake by keratinocytes was also observed, and was probably mediated by inhibiting protease‐activated receptor 2 expression. Many skin‐whitening agents can modulate the process of melanogenesis, but few have been shown to inhibit the melanosome transfer and uptake process. We demonstrated that chitosan exhibits a robust effect on depigmentation by inhibiting melanogenesis as well as melanosome transfer and uptake. Therefore, chitosan represents a potential therapeutic agent for hyperpigmentation disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.