The TGFb cytokine plays dichotomous roles during tumor progression. In normal and premalignant cancer cells, the TGFb signaling pathway inhibits proliferation and promotes cell-cycle arrest and apoptosis. However, the activation of this pathway in late-stage cancer cells could facilitate the epithelial-to-mesenchymal transition, stemness, and mobile features to enhance tumorigenesis and metastasis. The opposite functions of TGFb signaling during tumor progression make it a challenging target to develop anticancer interventions. Nevertheless, the recent discovery of cellular contextual determinants, especially the binding partners of the transcription modulators Smads, is critical to switch TGFb responses from proapoptosis to prometastasis. In this review, we summarize the recently identified contextual determinants (such as PSPC1, KLF5, 14-3-3z, C/EBPb, and others) and the mechanisms of how tumor cells manage the context-dependent autonomous TGFb responses to potentiate tumor progression. With the altered expression of some contextual determinants and their effectors during tumor progression, the aberrant molecular prometastatic switch might serve as a new class of theranostic targets for developing anticancer strategies.
Cellular metabolism of cancer cell is generally recognized to provide energy for facilitating tumor growth, but little is known about the aberrant metabolism in tumor progression and its prognostic value. Here, we applied integrated genomic approach to uncover the aberrant expression of metabolic enzymes in poorly-differentiated human hepatocellular carcinoma (HCC) for revealing targets against HCC malignancy. A total of 135 upregulated (22 are rate-limiting enzymes (RLEs)) and 362 down-regulated (77 are RLEs) metabolic genes were identified and associated with poor patient survival in large-cohorts of HCC patients in TCGA-LIHC and two other independent transcriptomic studies. Ten out of 22 upregulated RLEs in poorly-differentiated HCC are critical enzymes in pyrimidine metabolism pathways in association with stemness features by gene enrichment analysis and upregulated in ALDH1+ stem-like HCC subpopulations. By focusing on three RLEs including TK1, TYMS and DTYMK of dTTP biosynthesis pathway, expression of 3 RLEs in well-differentiated HCC cells increased ALDH1+ and spheroid stemness population but reversed by knockdown in poorly-differentiated HCC cells. Up-regulated 3 RLEs in HCC were associated with poor patient survival in multiple cohorts. Together, we identified aberrant pyrimidine pathway in poorly-differentiated HCC promotes cancer stemness served as potential theranostic target for battling HCC tumor progression.
Glutathione (GSH) is a small molecule thiol abundantly present in all eukaryotes with key roles in oxidative metabolism. Mitochondria, as the major site of oxidative reactions, must maintain sufficient levels of GSH to perform protective and biosynthetic functions. GSH is exclusively synthesized in the cytosol, yet the molecular machinery involved in mitochondrial GSH import remain elusive. Here, using organellar proteomics and metabolomics approaches, we identify SLC25A39, a mitochondrial membrane carrier of unknown function, to regulate GSH transport into mitochondria. SLC25A39 loss reduces mitochondrial GSH import and abundance without impacting whole cell GSH levels. Cells lacking both SLC25A39 and its paralog SLC25A40 exhibit defects in the activity and stability of iron-sulfur cluster containing proteins. Moreover, mitochondrial GSH import is necessary for cell proliferation in vitro and red blood cell development in mice. Remarkably, the heterologous expression of an engineered bifunctional bacterial GSH biosynthetic enzyme (GshF) in mitochondria enabled mitochondrial GSH production and ameliorated the metabolic and proliferative defects caused by its depletion. Finally, GSH availability negatively regulates SLC25A39 protein abundance, coupling redox homeostasis to mitochondrial GSH import in mammalian cells. Our work identifies SLC25A39 as an essential and regulated component of the mitochondrial GSH import machinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.