The degradation of polystyrene was modeled at the mechanistic level by developing differential equations describing the evolution of the moments of structurally distinct polymer species. This work extends our previous modeling work by incorporating chain-length-dependent rate parameters, tracking branched species more explicitly, using rate parameters primarily from the literature, and comparing the model results to extensive experimental data on the degradation of polymers of different molecular weights and at different temperatures. Unique polymer groups were devised that allowed the necessary polymeric features for capturing the degradation chemistry to be tracked, while maintaining a manageable model size. The conversion among the species was described using typical free radical reaction types, including hydrogen abstraction, midchain β-scission, end-chain β-scission, 1,5-hydrogen transfer, 1,3-hydrogen transfer, radical addition, bond fission, radical recombination, and disproportionation. The model included over 2700 reactions and tracked 64 species. Programs were developed using the programming language Perl to assemble moment equations from input of the polymeric features to be tracked. The intrinsic kinetic parameters (a frequency factor and activation energy for each reaction) were obtained from data in the literature and previous modeling work in our laboratory. − The model predictions for the evolution of M n and M w and the yields of styrene, dimer, and trimer compare very well with experimental data obtained in our laboratory for the degradation of polystyrene over a large temperature range and with different initial molecular weights. Evolution of low molecular weight products from experiments reported in the literature is also captured.
We have performed a comprehensive test of the effects of alternative fuels on the trace gas, nonvolatile particulate material (PM), and volatile PM emissions performance of a PW308 aircraft engine. The tests evaluated standard JP-8 jet fuel, a "zero sulfur" and "zero aromatic" synthetic fuel produced from a natural gas feedstock using the Fischer-Tropsch (FT) process, and a 50/50 blend of the FT fuel and JP-8. A Pratt & Whitney PW308 engine was operated under the same thrust and combustion conditions to ensure that the tests captured fuel differences, rather than engine operation differences. Emissions of trace gases, soot particles, and nucleation/growth PM were directly impacted by the sulfur and aromatic content of the fuel. FT fuel combustion greatly reduced SO 2 (>90%), gaseous hydrocarbons (40%), and NO (6-11%) content compared to JP-8 combustion. In general, combustion of the JP-8/FT fuel blend resulted in emissions intermediate to the FT and JP-8 values. FT combustion dramatically reduces soot particle number, mass, and size relative to JP-8, but increases effective soot particle density. In all cases, the drag behavior of the soot particles indicates deviations from spherical shape and effective soot particle densities are consistent with the soot particles being aggregates of primary spherules. As expected, FT combustion plumes support negligible formation of nucleation/growth mode particles (the number of nucleation growth mode particles is <20% the number of soot particles compared to >500% for sulfur containing JP-8). However, particle nucleation/growth for blended fuel combustion is enhanced relative to JP-8, despite the lower sulfur content of the FT/JP-8 fuel blend. A computational model explains the unexpected particle formation result primarily as the effect of much lower soot emissions present in blended fuel combustion exhaust compared to JP-8. Fuel composition, specifically aromatic and sulfur content, affect all aspects of emissions performance and the effect of simultaneously reducing aromatic and sulfur content can lead to surprising behavior.
The pyrolysis of polypropylene was modeled at the mechanistic level to predict the formation of low molecular weight products. Differential equations were developed that describe the evolution of the moments of structurally distinct polymer species. Unique polymer groups were devised that allowed the necessary polymeric features for capturing the pyrolysis chemistry to be tracked, while maintaining a manageable model size. The conversion among the species was described using typical free radical reaction types, including intermolecular hydrogen abstraction, midchain β-scission, end-chain β-scission, intramolecular hydrogen transfer, radical addition, bond fission, radical recombination, and disproportionation. The model included over 24 000 reactions and tracked 213 species (27 products tracked with molecular weights below 215 amu). The intrinsic kinetic parameters (a frequency factor and activation energy for each reaction) were obtained from data in the literature and previous modeling work in our laboratory. , The model predictions for the evolution of the yields of five major alkenes and five major alkanes compare well with experimental data obtained in our laboratory for the pyrolysis of polypropylene over a temperature range of 350−420 °C. In addition, literature data for the evolution of the polypropylene molecular weight was captured by incorporating weak backbone links modeled as peroxide bonds.
Particulate contamination formed by homogeneous clustering reactions of silicon hydrides within silicon chemical vapor deposition processes is an important source of yield loss during semiconductor processing. On the other hand, intentional synthesis of silicon nanoparticles may be of great interest because of the unique optical and electronic properties of nanostructured silicon. Kinetic modeling can play an important role in developing a fundamental understanding of the particle clustering chemistry, and knowledge of the thermochemistry and reactivity of these silicon hydrides is necessary if a mechanistic kinetic model is to be constructed. Experimental measurements of thermochemical properties are usually expensive and difficult, and it is desirable to use computational quantum chemistry as an alternative. In this work, several theoretical methods were used to calculate thermochemical properties of silicon hydrides. Among the methods used, Gaussian-3 theory (G3) using the geometries from B3LYP density functional theory (B3LYP/6-31G(d)), referred to as G3//B3LYP, showed the most promising results with an average absolute deviation of 1.23 kcal/mol from experimental data for standard enthalpies of formation of small (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.