Accurate diagnosis of Helicobacter pylori (H. pylori) infection is a crucial part in the effective management of many gastroduodenal diseases. Several invasive and non-invasive diagnostic tests are available for the detection of H. pylori and each test has its usefulness and limitations in different clinical situations. Although none can be considered as a single gold standard in clinical practice, several techniques have been developed to give the more reliable results. Invasive tests are performed via endoscopic biopsy specimens and these tests include histology, culture, rapid urease test as well as molecular methods. Developments of endoscopic equipment also contribute to the real-time diagnosis of H. pylori during endoscopy. Urea breathing test and stool antigen test are most widely used non-invasive tests, whereas serology is useful in screening and epidemiological studies. Molecular methods have been used in variable specimens other than gastric mucosa. More than detection of H. pylori infection, several tests are introduced into the evaluation of virulence factors and antibiotic sensitivity of H. pylori, as well as screening precancerous lesions and gastric cancer. The aim of this article is to review the current options and novel developments of diagnostic tests and their applications in different clinical conditions or for specific purposes.
The known factors that have contributed to the decline of Helicobacter pylori (H. pylori) eradication rate include antibiotic resistance, poor compliance, high gastric acidity, high bacterial load, and cytochrome P450 2C19 (CYP2C19) polymorphism. Proton pump inhibitor (PPI) is important in the eradication regimen. The principal enzyme implicated in the metabolism of PPIs is CYP2C19. The effects of PPI depend on metabolic enzyme, cytochrome P450 enzymes, and CYP2C19 with genetic differences in the activity of this enzyme (the homozygous EM, heterozygous EM (HetEM), and poor metabolizer). The frequency of the CYP2C19 polymorphism is highly varied among different ethnic populations. The CYP2C19 genotype is a cardinal factor of H. pylori eradication in patients taking omeprazole- based or lansoprazole-based triple therapies. In contrast, the CYP2C19 polymorphism has no significant effect on the rabeprazole-based or esomeprazole-based triple therapies. The efficacy of levofloxacin-based rescue triple therapy might be also affected by the CYP2C19 polymorphism, but CYP2C19 genotypes did not show obvious impact on other levofloxacin-based rescue therapies. Choice of different PPIs and/or increasing doses of PPIs should be individualized based on the pharmacogenetics background of each patient and pharmacological profile of each drug. Other possible factors influencing gastric acid secretion (e.g., IL-1β- 511 polymorphism) would be also under consideration.
Gastric antral vascular ectasia (GAVE) is an uncommon but important cause of chronic gastrointestinal bleeding. It is often associated with systemic diseases such as autoimmune diseases, liver cirrhosis, chronic renal insufficiency and cardiovascular disease. The etiology of GAVE has not been fully explored and remains controversial. Diagnosis is mainly based on endoscopic presentation with flat or raised erythematous stripes radiating from the pylorus to the antrum and resembles a watermelon. Clinical presentation may range from iron-deficiency anemia secondary to occult blood loss, melena to hematemesis. In past decades, many therapeutic modalities including medical, endoscopic and surgical intervention have been introduced for GAVE treatment with variable efficacy. Herein, we review the efficacy and safety of these treatment options for GAVE.
The bismuth-based quadruple regimen has been applied in Helicobacter pylori rescue therapy worldwide. The non-bismuth-based quadruple therapy or “concomitant therapy” is an alternative option in first-line eradication but has not been used in second-line therapy. Discovering a valid regimen for rescue therapy in bismuth-unavailable countries is important. We conducted a randomized controlled trial to compare the efficacies of the standard quadruple therapy and a modified concomitant regimen. One hundred and twenty-four patients were randomly assigned into two groups: RBTM (rabeprozole 20 mg bid., bismuth subcitrate 120 mg qid, tetracycline 500 mg qid, and metronidazole 250 mg qid) and RATM (rabeprozole 20 mg bid., amoxicillin 1 g bid., tetracycline 500 mg qid, and metronidazole 250 mg qid) for 10 days. The eradication rate of the RBTM and RATM regimen was 92.1% and 90.2%, respectively, in intention-to-treat analysis. Patients in both groups had good compliance (~96%). The overall incidence of adverse events was higher in the RATM group (42.6% versus 22.2%, P = 0.02), but only seven patients (11.5%) experienced grades 2-3 events. In conclusion, both regimens had good efficacy, compliance, and acceptable side effects. The 10-day RATM treatment could be an alternative rescue therapy in bismuth-unavailable countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.