Vaccinia H1-related phosphatase (VHR) is classified as a dual specificity phosphatase. Unlike typical dual specificity phosphatases, VHR lacks the MAPK-binding domain and shows poor activity against MAPKs. We found that EGF receptor (EGFR) was a direct substrate of VHR and that overexpression of VHR down-regulated EGFR phosphorylation, particularly at Tyr-992 residue. Expression of VHR inhibited the activation of phospholipase C␥ and protein kinase C, both downstream effectors of Tyr-992 phosphorylation of EGFR. Decreasing VHR expression by RNA interference caused higher EGFR phosphorylation at Tyr-992. In addition to EGFR, VHR also directly dephosphorylated ErbB2. Consistent with these results, suppression of VHR augmented the foci formation ability of H1299 non-small cell lung cancer (NSCLC) cells, whereas overexpression of VHR suppressed cell growth in both two-and three-dimensional cultures. Expression of VHR also suppressed tumor formation in a mouse xenograft model. Furthermore, VHR expression was significantly lower in NSCLC tissues in comparison to that in normal lung tissues. Collectively, this study shows that down-regulation of VHR expression enhances the signaling of ErbB receptors and may be involved in NSCLC pathogenesis.Among protein modifications, tyrosine phosphorylation is extensively used only in multicellular, eukaryotic organisms. Protein-tyrosine phosphorylation plays an important role in signaling transduction pathways that are involved in embryogenesis, development, and homeostasis. Disorders in proteintyrosine phosphorylation are found in many human diseases from cancer to immune disorders. Although protein phosphorylation is a balanced action of protein kinases and phosphatases, the experimental data of protein phosphatases is proportionally much less than that of protein kinases. Dual specificity phosphatases (DUSPs) 3 are structurally related to protein-tyrosine phosphatases (PTP) and are initially implicated in the down-regulation of MAPKs (1). Distinct from PTPs, which have a deep catalytic cleft; DUSPs have shallow catalytic sites, which permit the less stringent phospho-amino acid specificity of DUSPs (2-4). Several DUSPs including MAPK phosphatases (MKP)-1 to -7, M3/6 (also called VH5), and VHR have been shown to inactivate one or several MAPKs (5-12). The expression of certain DUSPs is increased by mitogenic signaling (5, 13-15). Both ERK and JNK pathways induce the expression of MKPs (15-17). The induction of MKP expression by MAPK signaling may, in turn, lead to the down-regulation of MAPK activities. Recently, many newly identified DUSPs were found to have little or no phosphatase activity against MAPKs, indicating that MAPK inactivation is not the sole function of DUSPs (18 -21). These novel DUSPs are smaller in size compared with MKPs and lack the MAPK-binding domain. These groups of DUSPs have been classified as atypical DUSPs (1). Others' and our recent studies reveal that atypical DUSPs may play a critical role in the regulation of signaling triggered by protein tyrosine...
Epidermal growth factor receptor (EGFR) gene mutations are strongly associated with lung adenocarcinoma and favorable response to EGFR tyrosine kinase inhibitor. The mutated EGFR proteins (EGFRs) are hyper-phosphorylated and refractory to receptor down-regulation. To address the discrepancy between hyper-phosphorylation and lack of down-regulation of mutant EGFRs, we have examined the expression of EGFR negative regulators in non-small cell lung cancer (NSCLC) cell lines. We found that NSCLC cell lines expressing mutant EGFRs often had low expression of various negative regulators for EGFR. Among them, tumor suppressor CD82 was up-regulated by wild type (WT) EGFR but down-regulated by mutant EGFRs. Reconstitution of CD82 exerted stronger suppressive effects on mutant EGFRs than on WT EGFR. Active exportation of CD82 through the exosome was one of the mechanisms involved in achieving the overall CD82 down-regulation in mutant EGFR-expressing lung cancer cell lines. Over-expression of mutant EGFR protein frequently occurred in the lung cancer tissues of mutant EGFR-transgenic mice and also associated with CD82 down-regulation. Immunoblot analyses on the tumor tissues from 23 lung adenocarcinoma patients (12 with WT EGFR, and 11 with mutant EGFRs) also identified significantly stronger down-regulation of CD82 in tumors with mutant EGFRs than WT. Our data indicate that CD82 down-regulation could be a critical step involved in the EGFR over-expression and the stronger tumorigenic activity triggered by EGFR mutations. Up-regulation of the CD82 level may become a promising new treatment strategy for lung adenocarcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.