Waxes are esters obtained from long-chain fatty acids and long-chain alcohols which are biodegradable, biocompatible and nontoxic. Seafowl feather oil is a natural wax ester that exists on seafowl feathers. Cetyl 2-ethylhexanoate is the major ingredient of seafowl feather oil. Cetyl 2-ethylhexanoate is widely used in cosmetics as a base oil because of its lubricity, moisture retention and non-toxic properties. An optimal production of cetyl 2-ethylhexanoate by direct esterification of cetyl alcohol with 2-ethylhexanoic acid was developed using an immobilized lipase (Novozym Ò 435) as a catalyst in n-hexane. Response surface methodology (RSM) and 5-level-4-factor central composite rotatable design (CCRD) were employed to evaluate the effects of reaction time, reaction temperature, substrate molar ratio, and enzyme amount on the yield of cetyl 2-ethylhexanoate. The results show that reaction time, reaction temperature, substrate molar ratio, and enzyme amount have significant effects on the yield of the esterification reaction. On the basis of ridge-max analysis, the optimum conditions were as follows: a reaction time of 2.65 days, a reaction temperature of 56.18°C, a substrate molar ratio of 2.55:1, and an enzyme amount of 251.39%.The predicted and experimental values of molar conversion were 91.95 and 89.75 ± 1.06%, respectively.
A solvent-free system to produce octyl hydroxyphenylpropionate (OHPP) from p-hydroxyphenylpropionic acid (HPPA) and octanol using immobilized lipase (Novozym® 435) as a catalyst in an ultrasound-assisted packed-bed bioreactor was investigated. Response-surface methodology (RSM) and a three-level-three-factor Box-Behnken design were employed to evaluate the effects of reaction temperature (x₁), flow rate (x₂) and ultrasonic power (x₃) on the percentage of molar production of OHPP. The results indicate that the reaction temperature and flow rate were the most important variables in optimizing the production of OHPP. Based on a ridge max analysis, the optimum conditions for OHPP synthesis were predicted to consist of a reaction temperature of 65°C, a flow rate of 0.05 ml/min and an ultrasonic power of 1.74 W/cm² with a yield of 99.25%. A reaction was performed under these optimal conditions, and a yield of 99.33 ± 0.1% was obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.