Abstract-A topological and dynamical characterization of the stability boundaries for a fairly large class of nonlinear autonomous dynamic systems is presented. The stability boundary of a stable equilibrium point is shown to consist of the stable manifolds of all the equilibrium points (and/or closed orbits) on the stability boundary. Several necessary and sufficient conditions are derived to determine whether a given equilibrium point (or closed orbit) is on the stability boundary. A method to find the stability region based on these results is proposed. The method, when feasible, will find the exact stability region, rather than a subset of it as in the Lyapunov theory approach. Several examples are given to illustrate the theoretical prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.