We analyze 700 freshly-laid eggs from 58 species (22 families and 13 orders) across three orders of magnitude in egg mass. We study the elastic moduli using three metrics: (i) effective Young’s modulus, EFEM, by a combined experimental and numerical method; (ii) elastic modulus, Enano, by nanoindentation, and (iii) theoretical Young’s modulus, Etheory. We measure the mineral content by acid-base titration, and crystallographic characteristics by electron backscatter diffraction (EBSD), on representative species. We find that the mineral content ranges between 83.1% (Zebra finch) and 96.5% (ostrich) and is positively correlated with EFEM—23.28 GPa (Zebra finch) and 47.76 GPa (ostrich). The EBSD shows that eggshell is anisotropic and non-homogeneous, and different species have different degrees of crystal orientation and texture. Ostrich eggshell exhibits strong texture in the thickness direction, whereas chicken eggshell has little. Such anisotropy and inhomogeneity are consistent with the nanoindentation tests. However, the crystal characteristics do not appear to correlate with EFEM, as EFEM represents an overall “average” elasticity of the entire shell. The experimental results are consistent with the theoretical prediction of linear elasticity. Our comprehensive investigation into the elastic moduli of avian eggshell over broad taxonomic scales provides a useful dataset for those who work on avian reproduction.
Abundant fossil specimens of Scaphechinus mirabilis, now occurring mostly in temperate waters, have been found in the Toukoshan Formation (Pleistocene) in Miaoli County, Taiwan. Environmental changes leading to its extirpation (local extinction) have thus far been elusive. Here, we reconstruct past environmental and oceanic conditions off northwest Taiwan by analyzing clumped isotopes, as well as stable oxygen isotopes, of well-preserved fossil echinoid tests collected from the Toukoshan Formation. Radiocarbon dates suggest that these samples are from Marine Isotope Stage 3 (MIS 3). Paleotemperature estimates based on clumped isotopes indicate that fossil echinoids were living in oceanic conditions that range from 9 to 14 °C on average, comparable with the estimate derived for a modern sample from Mutsu Bay, Japan. Notably, this temperature range is ~ 10 °C colder than today’s conditions off northwest Taiwan. The substantially lower temperatures during ~ 30 ka (MIS 3) compared to the modern conditions might be due to the rerouting of surface currents off northwest Taiwan when the sea level was ~ 60 m lower than today, in addition to the cooling caused by a lower atmospheric CO2 level during the Last Glacial Period. Colder waters brought here by the China Coastal Current (CCC) and the existence of shallow subtidal zones termed “Miaoli Bay” (mainly located in the present-day Miaoli county) during MIS 3 plausibly sustained generations of S. mirabilis, yielding tens of thousands of fossil specimens in the well-preserved fossil beds. The likely extirpation driver is the drastic change from a temperate climate to much warmer conditions in the shallow sea during the Pleistocene–Holocene transition.
Finite element analysis (FEA) was used to conduct mechanical analyses on eggshells of giant birds, and relate this to the evolution and reproductive behavior of avian species. We aim to (1) investigate mechanical characteristics of eggshell structures of various ratite species, enabling comparisons between species with or without reversed sexual size dimorphism (RSSD); (2) quantify the safety margin provided by RSSD; (3) determine whether the Williams’ egg can have been incubated by an extinct giant bird Genyornis newtoni; (4) determine the theoretical maximum body mass for contact incubation. We use a dimensionless number C to quantify relative shell stiffness with respect to the egg size, allowing for comparison across wide body masses. We find that RSSD in moas significantly increases the safety margin of contact incubation by the lighter males. However, their safety margins are still smaller than those of the moa species without RSSD. Two different strategies were adopted by giant birds—one is RSSD and thinner shells, represented by some moa species; the other is no RSSD and regular shells, represented by the giant elephant bird. Finally, we predicted that the upper limit of body mass for contact incubation was 2000 kg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.