Schizophrenia has been associated with abnormal task-related brain activation in sensory and motor regions as well as social cognition network. Recently, two studies investigated temporal correlation between resting-state functional magnetic resonance imaging (R-fMRI) low-frequency oscillations (LFOs) in schizophrenia but reported mixed results. This may be due to the different frequency bands used in these studies. Here we utilized R-fMRI to measure the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) in three different frequency bands (slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.08 Hz; and typical band: 0.01-0.08 Hz) in 69 patients with schizophrenia and 62 healthy controls. We showed that there were significant differences in ALFF/fALFF between the two bands (slow-5 and slow-4) in regions including basal ganglia, midbrain, and ventromedial prefrontal cortex. Importantly, we also identified significant interaction between frequency bands and groups in inferior occipital gyrus, precuneus, and thalamus. The results suggest that the abnormalities of LFOs in schizophrenia is dependent on the frequency band and suggest that future studies should take the different frequency bands into account when measure intrinsic brain activity.
There is still no clear consensus as to which of the many functional and structural changes in the brain in schizophrenia are of most importance, although the main focus to date has been on those in the frontal and cingulate cortices. In the present study, we have used a novel holistic approach to identify brain-wide functional connectivity changes in medicated schizophrenia patients, and functional connectivity changes were analyzed using resting-state fMRI data from 69 medicated schizophrenia patients and 62 healthy controls. As far as we are aware, this is the largest population reported in the literature for a resting-state study. Voxel-based morphometry was also used to investigate gray and white matter volume changes. Changes were correlated with illness duration/symptom severity and a support vector machine analysis assessed predictive validity. A network involving the inferior parietal lobule, superior parietal gyrus, precuneus, superior marginal, and angular gyri was by far the most affected (68% predictive validity compared with 82% using all connections) and different components correlated with illness duration and positive and negative symptom severity. Smaller changes occurred in emotional memory and sensory and motor processing networks along with weakened interhemispheric connections. Our findings identify the key functional circuitry altered in schizophrenia involving the default network midline cortical system and the cortical mirror neuron system, both playing important roles in sensory and cognitive processing and particularly self-processing, all of which are affected in this disorder. Interestingly, the functional connectivity changes with the strongest links to schizophrenia involved parietal rather than frontal regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.