Computational studies of biological networks can help to identify components and wirings responsible for observed phenotypes. However, studying stochastic networks controlling many biological processes is challenging. Similar to Schrödinger's equation in quantum mechanics, the chemical master equation (CME) provides a basic framework for understanding stochastic networks. However, except for simple problems, the CME cannot be solved analytically. Here we use a method called discrete chemical master equation (dCME) to compute directly the full steady-state probability landscape of the lysogeny maintenance network in phage lambda from its CME. Results show that wild-type phage lambda can maintain a constant level of repressor over a wide range of repressor degradation rate and is stable against UV irradiation, ensuring heritability of the lysogenic state. Furthermore, it can switch efficiently to the lytic state once repressor degradation increases past a high threshold by a small amount. We find that beyond bistability and nonlinear dimerization, cooperativity between repressors bound to O R 1 and O R 2 is required for stable and heritable epigenetic state of lysogeny that can switch efficiently. Mutants of phage lambda lack stability and do not possess a high threshold. Instead, they are leaky and respond to gradual changes in degradation rate. Our computation faithfully reproduces the hair triggers for UVinduced lysis observed in mutants and the limitation in robustness against mutations. The landscape approach computed from dCME is general and can be applied to study broad issues in systems biology.B acteriophage lambda is a virus that infects Escherichia coli cells. It has served as a model system for studying regulatory networks and for engineering gene circuits (1-5). Of central importance is the molecular circuitry that controls phage lambda to choose between two productive modes of development, namely, the lysogenic state and the lytic state (Fig 1A). In the lysogenic state, phage lambda represses its developmental function, integrates its DNA into the chromosome of the host E. coli bacterium, and is replicated in cell cycles for potentially many generations. When threatening DNA damage occurs, phage lambda switches from the epigenetic state of lysogeny to the lytic state and undergoes massive replications in a single cell cycle, releases 50-100 progeny phages upon lysis of the E. coli cell. This switching process is called prophage induction (5).The molecular network that controls the choice between these two different physiological states has been studied extensively during the past 40 y (5-9). All of the major molecular components of the network have been identified, binding constants and reaction rates characterized, and there is a good experimental understanding of the general mechanism of the molecular switch (5). Theoretical studies have also contributed to the illumination of the central role of stochasticity (3) and the stability of lysogen against spontaneous switching (4, 10). With the advent o...
Breast cancer is the most commonly diagnosed cancer in women, with 10% of disease attributed to hereditary factors. Although BRCA1 and BRCA2 account for a high percentage of hereditary cases, there are more than 25 susceptibility genes that differentially impact the risk for breast cancer. Traditionally, germline testing for breast cancer was performed by Sanger dideoxy terminator sequencing in a reflexive manner, beginning with BRCA1 and BRCA2. The introduction of next-generation sequencing (NGS) has enabled the simultaneous testing of all genes implicated in breast cancer resulting in diagnostic labs offering large, comprehensive gene panels. However, some physicians prefer to only test for those genes in which established surveillance and treatment protocol exists. The NGS based BRCAplus test utilizes a custom tiled PCR based target enrichment design and bioinformatics pipeline coupled with array comparative genomic hybridization (aCGH) to identify mutations in the six high-risk genes: BRCA1, BRCA2, PTEN, TP53, CDH1, and STK11. Validation of the assay with 250 previously characterized samples resulted in 100% detection of 3,025 known variants and analytical specificity of 99.99%. Analysis of the clinical performance of the first 3,000 BRCAplus samples referred for testing revealed an average coverage greater than 9,000X per target base pair resulting in excellent specificity and the sensitivity to detect low level mosaicism and allele-drop out. The unique design of the assay enabled the detection of pathogenic mutations missed by previous testing. With the abundance of NGS diagnostic tests being released, it is essential that clinicians understand the advantages and limitations of different test designs.
Objective: We describe a novel congenital motor neuron disease with early demise due to respiratory insufficiency with clinical overlap with spinal muscular atrophy with respiratory distress (SMARD) type 1 but lacking a mutation in the IGHMBP2 gene.Methods: Exome sequencing was used to identify a de novo mutation in the LAS1L gene in the proband. Pathogenicity of the mutation was validated using a zebrafish model by morpholinomediated knockdown of las1l.Results: We identified a de novo mutation in the X-linked LAS1L gene in the proband (p.S477N).The mutation is in a highly conserved region of the LAS1L gene predicted to be deleterious by bioinformatic analysis. Morpholino-based knockdown of las1l, the orthologous gene in zebrafish, results in early lethality and disruption of muscle and peripheral nerve architecture. Coinjection of wild-type but not mutant human RNA results in partial rescue of the phenotype. Conclusion:We report a patient with a SMARD phenotype due to a mutation in LAS1L, a gene important in coordinating processing of the 45S pre-rRNA and maturation of the large 60S ribosomal subunit. Similarly, the IGHMB2 gene associated with SMARD type 1 has been suggested to have an important role in ribosomal biogenesis from its role in processing the 45S pre-rRNA. We propose that disruption of ribosomal maturation may be a common pathogenic mechanism linking SMARD phenotypes caused by both IGHMBP2 and LAS1L. Spinal muscular atrophy with respiratory distress (SMARD) is a rare autosomal recessive disorder of neonatal weakness and early respiratory failure (Online Mendelian Inheritance in Man [OMIM] #604320). 1 SMARD was first described in 1974 as a variant of WerdnigHoffmann disease (spinal muscular atrophy type I) but is distinguished by the prominence of early respiratory failure and distal muscle weakness or joint contractures.2 Since discovery of the IGHMBP2 gene as a cause for SMARD, 3 appreciation of the clinical and genetic heterogeneity has been increasing.2,4,5 IGHMBP2 is a ubiquitously expressed helicase that colocalizes with factors controlling RNA splicing in the cytosol and nucleus. 6 A role for IGHMBP2 in translation has been proposed based on colocalization in the cytoplasm with ribosomal proteins and ribosomal RNA (rRNA). 6,7 As in many other disorders with motor neuron involvement, it is unclear why mutations in IGHMBP2 have a disproportionate effect on motor neurons. 8Infants presenting with a SMARD phenotype but lacking mutations in IGHMBP2 are common, accounting for up to two-thirds of reported patients. 4,9 We describe an infant who presented with distal weakness and primary respiratory failure associated with diaphragm paralysis but lacking a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.