In an effort to optimize the antibacterial activity of kanamycin class aminoglycoside antibiotics, we have accomplished the synthesis and antibacterial assay of new kanamycin B analogues. A rationale-based glycodiversification strategy was employed. The activity of the lead is comparable to that of commercially available kanamycin. These new members, however, were found to be inactive against aminoglycoside resistant bacteria. Molecular modeling was used to provide the explanation. Thus, a new strategy for structural modifications of kanamycin class aminoglycosides is suggested.
The criteria for controlling the regioselectivity of Staudinger reduction of azides have been investigated. These findings enable a convenient direct N-1 modification of the perazidoneamine and perazidoribostamycin resulting in the synthesis of aminoglycoside antibiotics with activity against drug resistant bacteria.
[reaction: see text] A novel method for achieving the desired regioselective reduction of the N-1 azido group on a tetraazidoneamine has been developed that leads to the synthesis of both kanamycin and neomycin class antibiotics bearing N-1 modification. Both classes of aminoglycosides are active against aminoglycoside-resistant bacteria carrying APH(3')-I and AAC(6')/APH(2'').
Oxazolidinone derivatives have attracted growing interest in their pharmacological applications. 1 Linezolid (or Zyvox), for example, is the first FDA approved antibacterial drug in over 30 years (Figure 1). 2 The novel mechanism of action 3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.