Anion exchange membrane fuel cells are limited by the slow kinetics of alkaline hydrogen oxidation reaction (HOR). Here, we establish HOR catalytic activities of single-atom and diatomic sites as a function of *H and *OH binding energies to screen the optimal active sites for the HOR. As a result, the Ru-Ni diatomic one is identified as the best active center. Guided by the theoretical finding, we subsequently synthesize a catalyst with Ru-Ni diatomic sites supported on N-doped porous carbon, which exhibits excellent catalytic activity, CO tolerance, and stability for alkaline HOR and is also superior to single-site counterparts. In situ scanning electrochemical microscopy study validates the HOR activity resulting from the Ru-Ni diatomic sites. Furthermore, in situ x-ray absorption spectroscopy and computational studies unveil a synergistic interaction between Ru and Ni to promote the molecular H
2
dissociation and strengthen OH adsorption at the diatomic sites, and thus enhance the kinetics of HOR.
As the lightest and cheapest transition metal dichalcogenide, TiS possesses great potential as an electrode material for lithium batteries due to the advantages of high energy density storage capability, fast ion diffusion rate, and low volume expansion. Despite the extensive investigation of its electrochemical properties, the fundamental discharge-charge reaction mechanism of the TiS electrode is still elusive. Here, by a combination of ex situ and operando X-ray absorption spectroscopy with density functional theory calculations, we have clearly elucidated the evolution of the structural and chemical properties of TiS during the discharge-charge processes. The lithium intercalation reaction is highly reversible and both Ti and sulfur are involved in the redox reaction during the discharge and charge processes. In contrast, the conversion reaction of TiS is partially reversible in the first cycle. However, Ti-O related compounds are developed during electrochemical cycling over extended cycles, which results in the decrease of the conversion reaction reversibility and the rapid capacity fading. In addition, the solid electrolyte interphase formed on the electrode surface is found to be highly dynamic in the initial cycles and then gradually becomes more stable upon further cycling. Such understanding is important for the future design and optimization of TiS based electrodes for lithium batteries.
As a model system for hydrogen storage, magnesium hydride exhibits high hydrogen storage density, yet its practical usage is hindered by necessarily high temperatures and slow kinetics for hydrogenation-dehydrogenation cycling. Decreasing particle size has been proposed to simultaneously improve the kinetics and decrease the sorption enthalpies. However, the associated increase in surface reactivity due to increased active surface area makes the material more susceptible to surface oxidation or other side reactions, which would hinder the overall hydrogenation-dehydrogenation process and diminish the capacity. Previous work has shown that the chemical stability of Mg nanoparticles can be greatly enhanced by using reduced graphene oxide as a protecting agent. Although no bulklike crystalline MgO layer has been clearly identified in this graphene-encapsulated/Mg nanocomposite, we propose that an atomically thin layer of honeycomb suboxide exists, based on first-principles interpretation of Mg K-edge X-ray absorption spectra. Density functional theory calculations reveal that in contrast to conventional expectations for thick oxides this interfacial oxidation layer permits H dissociation to the same degree as pristine Mg metal with the added benefit of enhancing the binding between reduced graphene oxide and the Mg nanoparticle, contributing to improved mechanical and chemical stability of the functioning nanocomposite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.