The cerebrospinal fluid (CSF) of C57BL/6 mice infected with Angiostrongylus cantonensis was examined for kinetic changes in oxidative stress parameters, including reactive oxygen species (ROS), superoxide dismutase (SOD), catalase, malondialdehyde (MDA), 8-isoprostane, and 8-hydroxy-2'-deoxyguanosine (8-OHdG). The ROS increased gradually in the early stage of infection. During days 12-30 post-infection, the infected mice revealed ROS levels significantly higher than that in uninfected controls (P < 0.001). The ROS levels peaked at day 24 and then returned to that observed in uninfected controls at day 45 post-infection. The kinetics of MDA, 8-isoprostane, and 8-OHdG concentration changes observed in the CSF of the infected mice corresponded with kinetic changes in ROS levels. Thus, the excess ROS caused lipid peroxidation and DNA damage to cells in the central nervous system (CNS) of mice infected with A. cantonensis despite the increased antioxidant SOD and catalase enzyme activities during post-infection days 12-30. The oxidative stress in the CNS of C57BL/6 mice was apparently increased by diseases associated with A. cantonensis infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.