The objective of this study is to decompose gaseous acetone ((CH3)2CO) by a self-prepared nano-sized composite TiO2/In2O3/SnO2 film photocatalyst that was prepared by a multi-target vacuum sputter operating at a vacuum pressure of 3 mtorr. The operating parameters investigated for the sputtering process included oxygen to argon ratio (O2/Ar), sputtering temperature, substrate materials, substrate layers, and sputtering duration. The nano-sized composite TiO2/In2O3/SnO2 film photocatalyst was mainly composed of anatase with a few rutile. The surface roughness of the TiO2/In2O3/SnO2 film photocatalyst in terms of RMS ranged from 2.292 to 7.533 nm, while the thickness of the single- and double-layer film photocatalysts were 473.5 and 506.0 nm, respectively. Gaseous acetone was initially injected into and further degraded in a self-designed batch photocatalytic reactor containing the nano-sized composite TiO2/In2O3/SnO2 film photocatalyst. Experimental results indicated that the highest acetone degradation efficiency of 99.9% was obtained at 50°C and 1 atm with the incident of near-UV illuminated by a fluorescent black light lamp. Under the incidence of blue light (430-500 nm), the reaction rates of acetone decomposition were 2.353x10-5 and 3.478x10-5 μmole/cm2-sec for using single- and double-layer TiO2/In2O3/SnO2 film photocatalysts, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.