2007) Photochemical tuning capability of cholesteric liquid crystal cells containing chiral dopants end capped with menthyl groups, Liquid Crystals, 34:7, 891-902,In order to investigate the photochemical tuning capability of chiral monomers and polymers containing end-capped menthyl groups, a new series of chiral dopants was synthesized and added to commercially available nematic liquid crystals to induce cholesteric liquid crystal (LC) phases. The addition of chiral dopants with azo structure led to phototunability of the reflection colour of the LC cells. Photochromic variation of the LC cells due to photoisomerization of the azo compound was investigated. After photopolymerization of the monomers inside the cholesteric LC cells, the centre wavelength of the reflected band of the incident light was found to be fixed and the reflected bandwidth was broadened, resulting in a red shift. A schematic representation of both the photoisomerization of the azo dopants and its effect on variation of twisting pitches is proposed. Real image recording was performed using 365 nm UV through a mask with text. The top and side views of the morphological network structures of a fabricated cholesteric LC cell were investigated using scanning electron microscopy. The results of this investigation demonstrated that RGB reflected colours of LC cells can easily be achieved through the addition of the menthylcontaining synthesized chiral compounds to nematic LCs. The addition of synthesized AzoM helped further in recording the patterns onto cholesteric LC films using 365 nm UV exposure.
To estimate the effects of diastereomeric copolymers as photoresists, diastereomeric copolymers containing chiral and racemic bornyl methacrylates (BMAs) were synthesized. Both alicyclic BMAs were synthesized from (2)-borneol and (6)-borneol, and then copolymerized with t-butyl methacrylate (t-BMA), tetrahydro-pyranyl methacrylate (THPMA), and a-methacryloxy-g-butyrolactone (MABL). The glass transition temperature of the copolymers was found to increase with an increase in the content of alicyclic bornyl groups in the copolymers. To investigate the effect of both the alicyclic butyrolactone and the bornyl groups on photosensitivity, thermal property, and etching resistance, the synthesized alicyclic copolymers were used to prepare photoresists with photoacid generators. The sensitivity and the contrast of the photoresists were calculated. This investigation demonstrated that the existence of alicyclic butyrolactone and bornyl groups increases the etching resistance of photoresists. It was also found that high stereo hindered bornyl structures disturb and restrict the mobility of the polymer chain, leading to an increase in the thermal stability of the polymers. A real pattern recording of photoresists with PR3 composition was performed; an optimal sensitivity of 20 mJ/cm 2 and resolution of 1 lm of positive tone photoresists with 1 lm thickness was achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.