In this study, we propose a rapid plasma-assisted nitriding process using H2/N2 mixture gas in an atmospheric pressure plasma jet (APPJ) system to treat the surface of SKD11 cold-working steel in order to increase its surface hardness. The generated NH radicals in the plasma region are used to implement an ion-bombardment for nitriding the tempered martensite structure of SKD11 within 18 min to form the functional nitride layer with an increased microhardness around 1095 HV0.3. Higher ratios of H/E and H3/E2 were obtained for the values of 4.514 × 10−2 and 2.244 × 10−2, referring to a higher deformation resistance as compared with the pristine sample. After multi-cycling impact tests, smaller and shallower impact craters with less surface oxidation on plasma-treated SKD11 were distinctly proven to have the higher impact wear resistance. Therefore, the atmospheric pressure plasma nitriding process can enable a rapid thermochemical nitriding process to form a protective layer with unique advantages that increase the deformation-resistance and impact-resistance, improving the lifetime of SKD11 tool steel as die materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.