We have analyzed a number of intense X-ray flares observed in the Chandra Orion Ultradeep Project (COUP), a 13 day observation of the Orion Nebula Cluster (ONC), concentrating on the events with the highest statistics (in terms of photon flux and event duration). Analysis of the flare decay allows to determine the physical parameters of the flaring structure, particularly its size and (using the peak temperature and emission measure of the event) the peak density, pressure, and minimum confining magnetic field. A total of 32 events, representing the most powerful '1% of COUP flares, have sufficient statistics and are sufficiently well resolved to grant a detailed analysis. A broad range of decay times are present in the sample of flares, with lc (the 1/e decay time) ranging from 10 to 400 ks. Peak flare temperatures are often very high, with half of the flares in the sample showing temperatures in excess of 100 MK. Significant sustained heating is present in the majority of the flares. The magnetic structures that are found, from the analysis of the flare's decay, to confine the plasma are in a number of cases very long, with semilengths up to '10 12 cm, implying the presence of magnetic fields of hundreds of G (necessary to confine the hot flaring plasma) extending to comparable distance from the stellar photosphere. These very large sizes for the flaring structures (length L 3 R Ã ) are not found in more evolved stars, where, almost invariably, the same type of analysis results in structures with L R Ã . As the majority of young stars in the ONC are surrounded by disks, we speculate that the large magnetic structures that confine the flaring plasma are actually the same type of structures that channel the plasma in the magnetospheric accretion paradigm, connecting the star's photosphere with the accretion disk.
The chondrules, calcium-aluminum-rich inclusions (CAIs), and rims in chondritic meteorites could be formed when solid bodies are lifted by the aerodynamic drag of a magnetocentrifugally driven wind out of the relative cool of a shaded disk close to the star into the heat of direct sunlight. For reasonable self-consistent parameters of the bipolar outflow, the base and peak temperatures reached by solid bodies resemble those needed to melt CAIs and chondrules. The process also yields a natural sorting mechanism that explains the size distribution of CAIs and chondrules, as well as their fine-grained and coarse-grained rims. After reentry at great distances from the original launch radius, the CAIs, chondrules, and their rims would be compacted with the ambient nebular dust comprising the matrices, forming the observed chondritic bodies.
In January 2003, the Chandra Orion Ultradeep Project (COUP) detected about 1400 young stars during a 13.2 day observation of the Orion Nebula Cluster (ONC). This paper is a study of the X-ray properties of a well-defined sample of 28 solar-mass ONC stars based on COUP data. Our goals are to characterize
Dense, star-forming, cores of molecular clouds are observed to be significantly magnetized. A realistic magnetic field of moderate strength has been shown to suppress, through catastrophic magnetic braking, the formation of a rotationally supported disk during the protostellar accretion phase of low-mass star formation in the ideal MHD limit. We address, through 2D (axisymmetric) simulations, the question of whether realistic levels of nonideal effects, computed with a simplified chemical network including dust grains, can weaken the magnetic braking enough to enable a rotationally supported disk to form. We find that ambipolar diffusion, the dominant nonideal MHD effect over most of the density range relevant to disk formation, does not enable disk formation, at least in 2D. The reason is that ambipolar diffusion allows the magnetic flux that would be dragged into the central stellar object in the ideal MHD limit to pile up instead in a small circumstellar region, where the magnetic field strength (and thus the braking efficiency) is greatly enhanced. We also find that, on the scale of tens of AU or more, a realistic level of Ohmic dissipation does not weaken the magnetic braking enough for a rotationally supported disk to form, either by itself or in combination with ambipolar diffusion. The Hall effect, the least explored of these three nonideal MHD effects, can spin up the material close to the central object to a significant, supersonic rotation speed, even when the core is initially non-rotating, although the spun-up material remains too sub-Keplerian to form a rotationally supported disk. The problem of catastrophic magnetic braking that prevents disk formation in dense cores magnetized to realistic levels remains unresolved. Possible resolutions of this problem are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.