The purpose of this study was to measure the long-term growth of the mandible in miniature pigs using 3D Cone-Beam Computerized Tomography (CBCT). The mandibles of the pigs were scanned monthly over 12 months using CBCT and the 3D mandibular models were reconstructed from the data. Seventeen anatomical landmarks were identified and classified into four groups of line segments, namely anteroposterior, superoinferior, mediolateral and anteroinferior. The inter-marker distances, inter-segmental angles, volume, monthly distance changes and percentage of changes were calculated to describe mandibular growth. The total changes of inter-marker distances were normalized to the initial values. All inter-marker distances increased over time, with the greatest mean normalized total changes in the superoinferior and anteroposterior groups (p<0.05). Monthly distance changes were greatest during the first four months and then reduced over time. Percentages of inter-marker distance changes were similar among the groups, reaching half of the overall growth around the 4th month. The mandibular volume growth increased non-linearly with time, accelerating during the first five months and slowing during the remaining months. The growth of the mandible was found to be anisotropic and non-homogeneous within the bone and non-linear over time, with faster growth in the ramus than in the body. These growth patterns appeared to be related to the development of the dentition, providing necessary space for the teeth to grow upward for occlusion and for the posterior teeth to erupt.
BackgroundThe current study aimed to compare the measurements of the mandible morphology using 3D cone beam computed tomography (CBCT) images with those using 2D CBCT-synthesized cephalograms; to quantify errors in measurements based on 2D synthesized cephalograms; and to clarify the effects such errors have on the description of the mandibular growth.MethodsMandibles of six miniature pigs were scanned monthly using CBCT over 12 months and the data were used to reconstruct the 3D bone models. Five anatomical landmarks were identified on each bone model, and the inter-marker distances and monthly distance changes were calculated and taken as the gold standard. Synthetic 2D cephalograms were also generated for each bone model using a digitally reconstructed radiography (DRR)-generation method. Errors in cephalogram measurements were determined as the differences between the calculated variables in cephalograms and the gold standard. The variations between cephalograms and the gold standard were also compared using paired t-tests.ResultsWhile the inter-marker distance increases varied among the marker pairs, all marker pairs increased their inter-marker distances gradually every month, reaching 50% of the total annual increases during the fourth and fifth months, and then slowing down in the subsequent months. The 2D measurements significantly underestimated most of the inter-marker distances throughout the monitoring period, in most of the monthly inter-marker distance changes during the first four months, and in the total growth (p < 0.05).ConclusionsSignificant errors exist in the measurements using 2D synthesized cephalogram, underestimating the mandibular dimensions and their monthly changes in the early stages of growth, as well as the total annual growth. These results should be considered in dental treatment planning at the beginning of the treatment in order to control more precisely the treatment process and outcome.
BackgroundCephalometric radiography has been used for orthodontic and surgical treatment planning and assessment, and for quantifying mandibular growth. However, it remains unclear how head positioning errors and the level of examiner experience affect the reliability of such morphometric measurements. The current study aimed to bridge the gap by determining the intra-, inter-rater, and inter-session reliability of measurements of mandibular morphology with random head positioning errors as measured by a junior and a senior dentist.MethodsCone-beam computed tomography data of twelve mandibles were obtained with each rotated randomly away from the neutral position within the range of +3 and −3° along each of the anatomical axes to simulate six imaging trials. A synthetic cephalogram for each trial was obtained via a digitally reconstructed radiography (DRR) technique and eleven landmarks for twelve morphological parameters on the cephalogram were identified manually six times by a junior and a senior dentist. The procedure was repeated on another day within 5 days. Test–retest reliability was assessed in terms of an intra-class correlation coefficient (ICC) using a two-way mixed-effects model.ResultsGood to very good intra-rater (senior: ICC > 0.92; junior: ICC > 0.78), inter-rater (ICC > 0.70 for most parameters) and inter-session reliability (senior: ICC > 0.84; junior: ICC > 0.62) were found. Bland & Altman plots of inter-rater comparisons show that there were systematical biases between the examiners on most parameters, except for the distance between Gonion and Pogonion.ConclusionsThe current results suggest that good to very good intra-rater, inter-rater and inter-session reliability can be achieved for most parameters with randomized head positioning errors; higher inter-session reliability can be achieved by more experienced examiners; and that long-term monitoring of mandibular growth based on cephalographic measurements should be made by the same more experienced examiner. The current DRR-based approach can be used to evaluate individual factors that affect the morphological measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.