Investing in stocks is an important tool for modern people’s financial management, and how to forecast stock prices has become an important issue. In recent years, deep learning methods have successfully solved many forecast problems. In this paper, we utilized multiple factors for the stock price forecast. The news articles and PTT forum discussions are taken as the fundamental analysis, and the stock historical transaction information is treated as technical analysis. The state-of-the-art natural language processing tool BERT are used to recognize the sentiments of text, and the long short term memory neural network (LSTM), which is good at analyzing time series data, is applied to forecast the stock price with stock historical transaction information and text sentiments. According to experimental results using our proposed models, the average root mean square error (RMSE ) has 12.05 accuracy improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.