Paroxysmal non-kinesigenic dyskinesia (PNKD) is characterized by spontaneous hyperkinetic attacks that are precipitated by alcohol, coffee, stress and fatigue. We report mutations in the myofibrillogenesis regulator 1 (MR-1) gene causing PNKD in 50 individuals from eight families. The mutations cause changes (Ala to Val) in the N-terminal region of two MR-1 isoforms. The MR-1L isoform is specifically expressed in brain and is localized to the cell membrane while the MR-1S isoform is ubiquitously expressed and shows diffuse cytoplasmic and nuclear localization. Bioinformatic analysis reveals that the MR-1 gene is homologous to the hydroxyacylglutathione hydrolase (HAGH) gene. HAGH functions in a pathway to detoxify methylglyoxal, a compound present in coffee and alcoholic beverages and produced as a by-product of oxidative stress. Our results suggest a mechanism whereby alcohol, coffee and stress may act as precipitants of attacks in PNKD. Stress response pathways will be important areas for elucidation of episodic disease genetics where stress is a common precipitant of many common disorders like epilepsy, migraine and cardiac arrhythmias.
Paroxysmal nonkinesigenic dyskinesia (PNKD) is an autosomal dominant episodic movement disorder.Patients have episodes that last 1 to 4 hours and are precipitated by alcohol, coffee, and stress. Previous research has shown that mutations in an uncharacterized gene on chromosome 2q33-q35 (which is termed PNKD) are responsible for PNKD. Here, we report the generation of antibodies specific for the PNKD protein and show that it is widely expressed in the mouse brain, exclusively in neurons. One PNKD isoform is a membrane-associated protein. Transgenic mice carrying mutations in the mouse Pnkd locus equivalent to those found in patients with PNKD recapitulated the human PNKD phenotype. Staining for c-fos demonstrated that administration of alcohol or caffeine induced neuronal activity in the basal ganglia in these mice. They also showed nigrostriatal neurotransmission deficits that were manifested by reduced extracellular dopamine levels in the striatum and a proportional increase of dopamine release in response to caffeine and ethanol treatment. These findings support the hypothesis that the PNKD protein functions to modulate striatal neurotransmitter release in response to stress and other precipitating factors. IntroductionThe paroxysmal dyskinesias consist of clinically and genetically distinct phenotypes, including paroxysmal kinesigenic dyskinesia, paroxysmal exercise-induced dyskinesia, and paroxysmal nonkinesigenic dyskinesia (PNKD) (1, 2). PNKD is a highly penetrant autosomal dominant disorder in which individuals have 1- to 4-hour attacks consisting of dystonia and choreoathetosis (3). These attacks can be induced reliably by administration of caffeine or alcohol and frequently when patients are stressed. The causative gene was mapped to chromosome 2q33-q35 (4, 5), and mutations in the PNKD gene (formerly called MR-1) were subsequently identified in PNKD families (6)(7)(8)(9)(10).The PNKD gene has at least 3 alternate splice forms, which encode proteins of 385, 361, and 142 amino acids. The long isoform of PNKD (PNKD-L) is specifically expressed in CNS, while the medium isoform (PNKD-M) and short isoform (PNKD-S) are ubiquitously expressed (7). Two missense mutations (Ala to Val) located at amino acids 7 or 9 of PNKD-L and PNKD-S were found in most patients, and a third mutation (Ala to Pro) at position 33 was reported in 1 family (11). Both PNKD-L and PNKD-M have a putative catalytic domain that is homologous to hydroxyacylglutathione hydrolase (HAGH), a member of the zinc metallo-hydrolase enzyme family, which contains β-lactamase domains. HAGH functions in a pathway to detoxify methylglyoxal, a by-product of oxidative stress (12). The normal role of PNKD in cells and the contribution of mutations to pathophysiology of PNKD are not known.Dyskinesia is seen with many genetic and acquired disorders of the brain. Theoretically, such hyperkinetic movements could have their genesis in the basal ganglia, the cerebellum, or even in the cortex. Having cloned the gene and shown by in situ hybridization that it is...
Paroxysmal non-kinesigenic dyskinesia (PNKD) is a rare autosomal dominant movement disorder triggered by stress, fatigue or consumption of either alcohol or caffeine. Attacks last 1–4 h and consist of dramatic dystonia and choreoathetosis in the limbs, trunk and face. The disease is associated with single amino acid changes (A7V or A9V) in PNKD, a protein of unknown function. Here we studied the stability, cellular localization and enzymatic activity of the PNKD protein in cultured cells and transgenic animals. The N-terminus of the wild-type (WT) long PNKD isoform (PNKD-L) undergoes a cleavage event in vitro, resistance to which is conferred by disease-associated mutations. Mutant PNKD-L protein is degraded faster than the WT protein. These results suggest that the disease mutations underlying PNKD may disrupt protein processing in vivo, a hypothesis supported by our observation of decreased cortical Pnkd-L levels in mutant transgenic mice. Pnkd is homologous to a superfamily of enzymes with conserved β-lactamase domains. It shares highest homology with glyoxalase II but does not catalyze the same reaction. Lower glutathione levels were found in cortex lysates from Pnkd knockout mice versus WT littermates. Taken together, our results suggest an important role for the Pnkd protein in maintaining cellular redox status.
Objective Myoclonus is characterized by sudden, brief involuntary movements and its presence is debilitating. We identified a family suffering from adult-onset, cortical myoclonus without associated seizures. We performed clinical, electrophysiological, and genetic studies to define this phenotype. Methods A large, four-generation family with history of myoclonus underwent careful questioning, examination, and electrophysiological testing. Thirty-five family members donated blood samples for genetic analysis, which included SNP mapping, microsatellite linkage, targeted massively parallel sequencing, and Sanger sequencing. In silico and in vitro experiments were performed to investigate functional significance of the mutation. Results We identified 11 members of a Canadian Mennonite family suffering from adult-onset, slowly progressive, disabling, multifocal myoclonus. Somatosensory evoked potentials indicated a cortical origin of the myoclonus. There were no associated seizures. Some severely affected individuals developed signs of progressive cerebellar ataxia of variable severity late in the course of their illness. The phenotype was inherited in an autosomal dominant fashion. We demonstrated linkage to chromosome 16q21-22.1. We then sequenced all coding sequence in the critical region, identifying only a single co-segregating, novel, nonsynonymous mutation, which resides in the gene NOL3. Furthermore, this mutation was found to alter post-translational modification of NOL3 protein in vitro. Interpretation We propose that Familial Cortical Myoclonus (FCM) is a novel movement disorder that may be caused by mutation in NOL3. Further investigation of the role of NOL3 in neuronal physiology may shed light on neuronal membrane hyperexcitability and pathophysiology of myoclonus and related disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.